

介绍

我们建议您下载并使用 mu editor [http://codewith.mu/] 当通过这些教程工作时。下载和安装MU的说明在其网站上。
您可能需要安装一个驱动程序，这取决于您的平台（指令在网站上）。

Mu支持Windows, OSX 和 Linux.

一旦安装MU，通过USB接口将你的TurnipBit连接到你的计算机上。

在编辑器窗口中编写你的脚本，然后点击“下载”按钮将其传送到TurnipBit。
如果不起作用，请确保您的TurnipBit在文件系统浏览器中作为USB存储设备出现。

Tutorials

	Hello, World!

	Images
	DIY Images

	Animation

	Buttons
	Event Loops

	Handling an Event

	Input/Output
	Ticklish Python

	Bleeps and Bloops

	Music
	Wolfgang Amadeus Microbit

	Sound Effects

	Random
	Random Numbers

	Seeds of Chaos

	Movement
	Musical Mayhem

	Gestures
	Magic-8

	Direction
	Compass

	Storage
	Open Sesame

	OS SOS

	File Transfer

	Mainly main.py

	Speech
	DALEK Poetry

	Say Something

	Poetry on Demand

	Phonemes

	Sing A Song of Micro:bit

	Network
	Connection

	Signal

	Protocol

	Message

	Application

	The End Result

	Radio
	Layers upon Layers

	Bytes

	Addressing

	Fireflies

	Next Steps

Python是 world’s most popular [http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html] 编程语言。
每天，不知不觉中，你可能会使用Python编写的软件。 各种各样的公司和组织使用Python进行各种各样的应用。
Google, NASA, Bank of America, Disney, CERN, YouTube, Mozilla, 《卫报》——该名单将继续涵盖经济、科学和艺术的所有领域。

例如, 你还记得 discovery of gravitational waves <http://www.bbc.co.uk/news/science-environment-35552207>`_通告吗? 用来测量的仪器被控制了 `with Python [https://www.reddit.com/r/IAmA/comments/45g8qu/we_are_the_ligo_scientific_collaboration_and_we/czxnlux].

简而言之,如果你教或学Python，你正在开发一种非常有价值的技能，它适用于人类努力的所有领域。

其中一个领域是TurnipBit(兼容英国广播公司惊人的micro:bit设备）。它运行一个版本
“micropython Python的设计运行在像英国广播公司micro:bit。
这是Python 3的完整实现，所以当您转到其他东西（如在Raspberry Pi上编程Python）时，您将使用完全相同的语言。

MicroPython并不包括所有的标准代码库，对”正规”Python来说。然而, 我们已经创建了一个特殊 microbit 模块让你控制装置。

Python和micropython是自由软件。这不仅意味着您不需要支付任何使用Python的费用，而且还可以自由地返回到Python社区。这可能是代码、文档、bug报告、运行社区组或编写教程（如本教程）的形式。事实上，所有的Python相关资源的英国广播公司turnipbit已创建的一个国际志愿者团队在他们的自由时间工作。

这些课程介绍micropython和易于遵循的步骤TurnipBit。欢迎采纳并调整它们。
以课堂为基础的课程，或者在家里独自学习。

如果你探索、试验和玩耍，你将获得最大的成功。你不能打破一个turnipbit写代码不正确。潜入水中！

警告一句: 你会失败很多次, 这很好。 失败是软件开发人员如何学习。
我们这些从事软件开发的人有很多乐趣，可以追踪bug并避免重复错误。

如果有疑问，记得micropython:

Code,
Hack it,
Less is more,
Keep it simple,
Small is beautiful,

Be brave! Break things! Learn and have fun!
Express yourself with MicroPython.

Happy hacking! :-)

祝你好运!

Hello, World!

用一种新的语言开始编程的传统方法是让你的计算机说, “Hello, World!”.

[image: ../_images/scroll-hello1.gif]
使用MicroPython非常容易:

from microbit import *
display.scroll("Hello, World!")

第一行代码比较特殊:

from microbit import *

...告诉MicroPython获取所有资源并在TurnipBit上执行。 这个模块就是 microbit (模块
是预先存在的代码库。)。 当使用 import 的东西就是告诉MicroPython要使用它, 并且 * 是Python的*everything*。
因此, from microbit import * 的意思是, “我想能够从TurnipBit代码库中使用一切”。

第二行:

display.scroll("Hello, World!")

...告诉micropython使用显示滚动字符的字符串”Hello, World!”。 The display part of that line is an object from the
microbit module that represents the device’s physical display (we say
“object” instead of “thingy”, “whatsit” or “doodah”). We can tell the display
to do things with a full-stop . followed by what looks like a command (in
fact it’s something we call a method). In this case we’re using the
scroll method. Since scroll needs to know what characters to scroll
across the physical display we specify them between double quotes (")
within parenthesis ((and)). These are called the arguments. So,
display.scroll("Hello, World!") means, in English, “I want you to use the
display to scroll the text ‘Hello, World!’”. If a method doesn’t need any
arguments we make this clear by using empty parenthesis like this: ().

Copy the “Hello, World!” code into your editor and flash it onto the device.
Can you work out how to change the message? Can you make it say hello to you?
For example, I might make it say “Hello, Nicholas!”. Here’s a clue, you need to
change the scroll method’s argument.

警告

It may not work. :-)

This is where things get fun and MicroPython tries to be helpful. If
it encounters an error it will scroll a helpful message on the micro:bit’s
display. If it can, it will tell you the line number for where the error
can be found.

Python expects you to type EXACTLY the right thing. So, for instance,
Microbit, microbit and microBit are all different things to
Python. If MicroPython complains about a NameError it’s probably
because you’ve typed something inaccurately. It’s like the difference
between referring to “Nicholas” and “Nicolas”. They’re two different people
but their names look very similar.

If MicroPython complains about a SyntaxError you’ve simply typed code
in a way that MicroPython can’t understand. Check you’re not missing any
special characters like " or :. It’s like putting. a full stop in
the middle of a sentence. It’s hard to understand exactly what you mean.

Your microbit may stop responding: you cannot flash new code to it or
enter commands into the REPL. If this happens, try power cycling it. That
is, unplug the USB cable (and battery cable if it’s connected), then plug
the cable back in again. You may also need to quit and re-start your code
editor application.

Images

MicroPython is about as good at art as you can be if the only thing you have is
a 5x5 grid of red LEDs (light emitting diodes - the things that light up on the
front of the device). MicroPython gives you quite a lot of control over the
display so you can create all sorts of interesting effects.

MicroPython comes with lots of built-in pictures to show on the display.
For example, to make the device appear happy you type:

from microbit import *
display.show(Image.HAPPY)

I suspect you can remember what the first line does. The second line uses the
display object to show a built-in image. The happy image we want to
display is a part of the Image object and called HAPPY. We tell
show to use it by putting it between the parenthesis ((and)).

[image: tutorials/happy.png]
Here’s a list of the built-in images:

	Image.HEART

	Image.HEART_SMALL

	Image.HAPPY

	Image.SMILE

	Image.SAD

	Image.CONFUSED

	Image.ANGRY

	Image.ASLEEP

	Image.SURPRISED

	Image.SILLY

	Image.FABULOUS

	Image.MEH

	Image.YES

	Image.NO

	Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5,
Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

	Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E,
Image.ARROW_SE, Image.ARROW_S, Image.ARROW_SW,
Image.ARROW_W, Image.ARROW_NW

	Image.TRIANGLE

	Image.TRIANGLE_LEFT

	Image.CHESSBOARD

	Image.DIAMOND

	Image.DIAMOND_SMALL

	Image.SQUARE

	Image.SQUARE_SMALL

	Image.RABBIT

	Image.COW

	Image.MUSIC_CROTCHET

	Image.MUSIC_QUAVER

	Image.MUSIC_QUAVERS

	Image.PITCHFORK

	Image.XMAS

	Image.PACMAN

	Image.TARGET

	Image.TSHIRT

	Image.ROLLERSKATE

	Image.DUCK

	Image.HOUSE

	Image.TORTOISE

	Image.BUTTERFLY

	Image.STICKFIGURE

	Image.GHOST

	Image.SWORD

	Image.GIRAFFE

	Image.SKULL

	Image.UMBRELLA

	Image.SNAKE

There’s quite a lot! Why not modify the code that makes the micro:bit look
happy to see what some of the other built-in images look like? (Just replace
Image.HAPPY with one of the built-in images listed above.)

DIY Images

Of course, you want to make your own image to display on the micro:bit, right?

That’s easy.

Each LED pixel on the physical display can be set to one of ten values. If a
pixel is set to 0 (zero) then it’s off. It literally has zero brightness.
However, if it is set to 9 then it is at its brightest level. The values
1 to 8 represent the brightness levels between off (0) and full on
(9).

Armed with this information, it’s possible to create a new image like this:

from microbit import *

boat = Image("05050:"
 "05050:"
 "05050:"
 "99999:"
 "09990")

display.show(boat)

(When run, the device should display an old-fashioned “Blue Peter” sailing ship
with the masts dimmer than the boat’s hull.)

Have you figured out how to draw a picture? Have you noticed that each line of
the physical display is represented by a line of numbers ending in : and
enclosed between " double quotes? Each number specifies a brightness.
There are five lines of five numbers so it’s possible to specify the individual
brightness for each of the five pixels on each of the five lines on the
physical display. That’s how to create a new image.

Simple!

In fact, you don’t need to write this over several lines. If you think you can
keep track of each line, you can rewrite it like this:

boat = Image("05050:05050:05050:99999:09990")

Animation

Static images are fun, but it’s even more fun to make them move. This is also
amazingly simple to do with MicroPython ~ just use a list of images!

Here is a shopping list:

Eggs
Bacon
Tomatoes

Here’s how you’d represent this list in Python:

shopping = ["Eggs", "Bacon", "Tomatoes"]

I’ve simply created a list called shopping and it contains three items.
Python knows it’s a list because it’s enclosed in square brackets ([and
]). Items in the list are separated by a comma (,) and in this instance
the items are three strings of characters: "Eggs", "Bacon" and
"Tomatoes". We know they are strings of characters because they’re enclosed
in quotation marks ".

You can store anything in a list with Python. Here’s a list of numbers:

primes = [2, 3, 5, 7, 11, 13, 17, 19]

注解

Numbers don’t need to be quoted since they represent a value (rather than a
string of characters). It’s the difference between 2 (the numeric value
2) and "2" (the character/digit representing the number 2). Don’t worry
if this doesn’t make sense right now. You’ll soon get used to it.

It’s even possible to store different sorts of things in the same list:

mixed_up_list = ["hello!", 1.234, Image.HAPPY]

Notice that last item? It was an image!

We can tell MicroPython to animate a list of images. Luckily we have a
couple of lists of images already built in. They’re called Image.ALL_CLOCKS
and Image.ALL_ARROWS:

from microbit import *

display.show(Image.ALL_CLOCKS, loop=True, delay=100)

As with a single image, we use display.show to show it on the
device’s display. However, we tell MicroPython to use Image.ALL_CLOCKS and
it understands that it needs to show each image in the list, one after the
other. We also tell MicroPython to keep looping over the list of images (so
the animation lasts forever) by saying loop=True. Furthermore, we tell it
that we want the delay between each image to be only 100 milliseconds (a tenth
of a second) with the argument delay=100.

Can you work out how to animate over the Image.ALL_ARROWS list? How do you
avoid looping forever (hint: the opposite of True is False although
the default value for loop is False)? Can you change the speed of the
animation?

Finally, here’s how to create your own animation. In my example I’m going to
make my boat sink into the bottom of the display:

from microbit import *

boat1 = Image("05050:"
 "05050:"
 "05050:"
 "99999:"
 "09990")

boat2 = Image("00000:"
 "05050:"
 "05050:"
 "05050:"
 "99999")

boat3 = Image("00000:"
 "00000:"
 "05050:"
 "05050:"
 "05050")

boat4 = Image("00000:"
 "00000:"
 "00000:"
 "05050:"
 "05050")

boat5 = Image("00000:"
 "00000:"
 "00000:"
 "00000:"
 "05050")

boat6 = Image("00000:"
 "00000:"
 "00000:"
 "00000:"
 "00000")

all_boats = [boat1, boat2, boat3, boat4, boat5, boat6]
display.show(all_boats, delay=200)

Here’s how the code works:

	I create six boat images in exactly the same way I described above.

	Then, I put them all into a list that I call all_boats.

	Finally, I ask display.show to animate the list with a delay of 200 milliseconds.

	Since I’ve not set loop=True the boat will only sink once (thus making my animation scientifically accurate). :-)

What would you animate? Can you animate special effects? How would you make an
image fade out and then fade in again?

Buttons

So far we have created code that makes the device do something. This is called
output. However, we also need the device to react to things. Such things are
called inputs.

It’s easy to remember: output is what the device puts out to the world
whereas input is what goes into the device for it to process.

The most obvious means of input on the micro:bit are its two buttons, labelled
A and B. Somehow, we need MicroPython to react to button presses.

This is remarkably simple:

from microbit import *

sleep(10000)
display.scroll(str(button_a.get_presses()))

All this script does is sleep for ten thousand milliseconds (i.e. 10 seconds)
and then scrolls the number of times you pressed button A. That’s it!

While it’s a pretty useless script, it introduces a couple of interesting new
ideas:

	The sleep function will make the micro:bit sleep for a certain number
of milliseconds. If you want a pause in your program, this is how to do it.
A function is just like a method, but it isn’t attached by a dot to an
object.

	There is an object called button_a and it allows you to get the number
of times it has been pressed with the get_presses method.

Since get_presses gives a numeric value and display.scroll only
displays characters, we need to convert the numeric value into a string of
characters. We do this with the str function (short for “string” ~ it
converts things into strings of characters).

The third line is a bit like an onion. If the parenthesis are the
onion skins then you’ll notice that display.scroll contains str that
itself contains button_a.get_presses. Python attempts to work out the
inner-most answer first before starting on the next layer out. This is called
nesting - the coding equivalent of a Russian Matrioshka doll.

[image: ../_images/matrioshka.jpg]
Let’s pretend you’ve pressed the button 10 times. Here’s how Python works out
what’s happening on the third line:

Python sees the complete line and gets the value of get_presses:

display.scroll(str(button_a.get_presses()))

Now that Python knows how many button presses there have been, it converts the
numeric value into a string of characters:

display.scroll(str(10))

Finally, Python knows what to scroll across the display:

display.scroll("10")

While this might seem like a lot of work, MicroPython makes this happen
extraordinarily fast.

Event Loops

Often you need your program to hang around waiting for something to happen. To
do this you make it loop around a piece of code that defines how to react to
certain expected events such as a button press.

To make loops in Python you use the while keyword. It checks if something
is True. If it is, it runs a block of code called the body of the loop.
If it isn’t, it breaks out of the loop (ignoring the body) and the rest of the
program can continue.

Python makes it easy to define blocks of code. Say I have a to-do list written
on a piece of paper. It probably looks something like this:

Shopping
Fix broken gutter
Mow the lawn

If I wanted to break down my to-do list a bit further, I might write something
like this:

Shopping:
 Eggs
 Bacon
 Tomatoes
Fix broken gutter:
 Borrow ladder from next door
 Find hammer and nails
 Return ladder
Mow the lawn:
 Check lawn around pond for frogs
 Check mower fuel level

It’s obvious that the main tasks are broken down into sub-tasks that are
indented underneath the main task to which they are related. So Eggs,
Bacon and Tomatoes are obviously related to Shopping. By indenting
things we make it easy to see, at a glance, how the tasks relate to each other.

This is called nesting. We use nesting to define blocks of code like this:

from microbit import *

while running_time() < 10000:
 display.show(Image.ASLEEP)

display.show(Image.SURPRISED)

The running_time function returns the number of milliseconds since the
device started.

The while running_time() < 10000: line checks if the running time is less
than 10000 milliseconds (i.e. 10 seconds). If it is, and this is where we can
see scoping in action, then it’ll display Image.ASLEEP. Notice how this is
indented underneath the while statement just like in our to-do list.

Obviously, if the running time is equal to or greater than 10000 milliseconds
then the display will show Image.SURPRISED. Why? Because the while
condition will be False (running_time is no longer < 10000). In that
case the loop is finished and the program will continue after the while
loop’s block of code. It’ll look like your device is asleep for 10
seconds before waking up with a surprised look on its face.

Try it!

Handling an Event

If we want MicroPython to react to button press events we should put it into
an infinite loop and check if the button is_pressed.

An infinite loop is easy:

while True:
 # Do stuff

(Remember, while checks if something is True to work out if it should
run its block of code. Since True is obviously True for all time, you
get an infinite loop!)

Let’s make a very simple cyber-pet. It’s always sad unless you’re pressing
button A. If you press button B it dies. (I realise this isn’t a very
pleasant game, so perhaps you can figure out how to improve it.):

from microbit import *

while True:
 if button_a.is_pressed():
 display.show(Image.HAPPY)
 elif button_b.is_pressed():
 break
 else:
 display.show(Image.SAD)

display.clear()

Can you see how we check what buttons are pressed? We used if,
elif (short for “else if”) and else. These are called conditionals
and work like this:

if something is True:
 # do one thing
elif some other thing is True:
 # do another thing
else:
 # do yet another thing.

This is remarkably similar to English!

The is_pressed method only produces two results: True or False.
If you’re pressing the button it returns True, otherwise it returns
False. The code above is saying, in English, “for ever and ever, if
button A is pressed then show a happy face, else if button B is pressed break
out of the loop, otherwise display a sad face.” We break out of the loop (stop
the program running for ever and ever) with the break statement.

At the very end, when the cyber-pet is dead, we clear the display.

Can you think of ways to make this game less tragic? How would you check if
both buttons are pressed? (Hint: Python has and, or and not
logical operators to help check multiple truth statements (things that
produce either True or False results).

Input/Output

There are strips of metal along the bottom edge of the BBC micro:bit that make
it look as if the device has teeth. These are the input/output pins (or I/O pins
for short).

[image: tutorials/blue-microbit.png]
Some of the pins are bigger than others so it’s possible to attach crocodile
clips to them. These are the ones labelled 0, 1, 2, 3V and GND (computers
always start counting from zero). If you attach an edge connector board to the
device it’s possible to plug in wires connected to the other (smaller) pins.

Each pin on the BBC micro:bit is represented by an object called pinN
where N is the pin number. So, for example, to do things with the pin
labelled with a 0 (zero), use the object called pin0.

Simple!

These objects have various methods associated with them depending upon what
the specific pin is capable of.

Ticklish Python

The simplest example of input via the pins is a check to see if they are
touched. So, you can tickle your device to make it laugh like this:

from microbit import *

while True:
 if pin0.is_touched():
 display.show(Image.HAPPY)
 else:
 display.show(Image.SAD)

With one hand, hold your device by the GND pin. Then, with your other hand,
touch (or tickle) the 0 (zero) pin. You should see the display change from
grumpy to happy!

This is a form of very basic input measurement. However, the fun really starts
when you plug in circuits and other devices via the pins.

Bleeps and Bloops

The simplest thing we can attach to the device is a Piezo buzzer. We’re going
to use it for output.

[image: ../_images/piezo_buzzer.jpg]
These small devices play a high-pitched bleep when connected to a circuit. To
attach one to your BBC micro:bit you should attach crocodile clips to pin 0 and
GND (as shown below).

[image: tutorials/pin0-gnd.png]
The wire from pin 0 should be attached to the positive connector on the buzzer
and the wire from GND to the negative connector.

The following program will cause the buzzer to make a sound:

from microbit import *

pin0.write_digital(1)

This is fun for about 5 seconds and then you’ll want to make the horrible
squeaking stop. Let’s improve our example and make the device bleep:

from microbit import *

while True:
 pin0.write_digital(1)
 sleep(20)
 pin0.write_digital(0)
 sleep(480)

Can you work out how this script works? Remember that 1 is “on” and 0
is “off” in the digital world.

The device is put into an infinite loop and immediately switches pin 0 on. This
causes the buzzer to emit a beep. While the buzzer is beeping, the device
sleeps for twenty milliseconds and then switches pin 0 off. This gives the
effect of a short bleep. Finally, the device sleeps for 480 milliseconds before
looping back and starting all over again. This means you’ll get two bleeps per
second (one every 500 milliseconds).

We’ve made a very simple metronome!

Music

MicroPython on the BBC micro:bit comes with a powerful music and sound module.
It’s very easy to generate bleeps and bloops from the device if you attach a
speaker. Use crocodile clips to attach pin 0 and GND to the positive and
negative inputs on the speaker - it doesn’t matter which way round they are
connected to the speaker.

[image: tutorials/pin0-gnd.png]

注解

Do not attempt this with a Piezo buzzer - such buzzers are only able to
play a single tone.

Let’s play some music:

import music

music.play(music.NYAN)

Notice that we import the music module. It contains methods used to make
and control sound.

MicroPython has quite a lot of built-in melodies. Here’s a complete list:

	music.DADADADUM

	music.ENTERTAINER

	music.PRELUDE

	music.ODE

	music.NYAN

	music.RINGTONE

	music.FUNK

	music.BLUES

	music.BIRTHDAY

	music.WEDDING

	music.FUNERAL

	music.PUNCHLINE

	music.PYTHON

	music.BADDY

	music.CHASE

	music.BA_DING

	music.WAWAWAWAA

	music.JUMP_UP

	music.JUMP_DOWN

	music.POWER_UP

	music.POWER_DOWN

Take the example code and change the melody. Which one is your favourite? How
would you use such tunes as signals or cues?

Wolfgang Amadeus Microbit

Creating your own tunes is easy!

Each note has a name (like C# or F), an octave (telling MicroPython how
high or low the note should be played) and a duration (how
long it lasts through time). Octaves are indicated by a number ~ 0 is the
lowest octave, 4 contains middle C and 8 is about as high as you’ll ever need
unless you’re making music for dogs. Durations are also expressed as numbers.
The higher the value of the duration the longer it will last. Such
values are related to each other - for instance, a duration of 4 will last
twice as long as a duration 2 (and so on). If you use the note name R
then MicroPython will play a rest (i.e. silence) for the specified duration.

Each note is expressed as a string of characters like this:

NOTE[octave][:duration]

For example, "A1:4" refers to the note named A in octave number 1
to be played for a duration of 4.

Make a list of notes to create a melody (it’s equivalent to creating an
animation with a list of images). For example, here’s how to make MicroPython
play opening of “Frere Jaques”:

import music

tune = ["C4:4", "D4:4", "E4:4", "C4:4", "C4:4", "D4:4", "E4:4", "C4:4",
 "E4:4", "F4:4", "G4:8", "E4:4", "F4:4", "G4:8"]
music.play(tune)

注解

MicroPython helps you to simplify such melodies. It’ll remember the octave
and duration values until you next change them. As a result, the example
above can be re-written as:

import music

tune = ["C4:4", "D", "E", "C", "C", "D", "E", "C", "E", "F", "G:8",
 "E:4", "F", "G:8"]
music.play(tune)

Notice how the octave and duration values only change when they have to.
It’s a lot less typing and simpler to read.

Sound Effects

MicroPython lets you make tones that are not musical notes. For example, here’s
how to create a Police siren effect:

import music

while True:
 for freq in range(880, 1760, 16):
 music.pitch(freq, 6)
 for freq in range(1760, 880, -16):
 music.pitch(freq, 6)

Notice how the music.pitch method is used in this instance. It expects a
frequency. For example, the frequency of 440 is the same as a concert A
used to tune a symphony orchestra.

In the example above the range function is used to generate ranges of
numeric values. These numbers are used to define the pitch of the tone. The
three arguments for the range function are the start value, end value and
step size. Therefore, the first use of range is saying, in English, “create
a range of numbers between 880 and 1760 in steps of 16”. The second use of
range is saying, “create a range of values between 1760 and 880 in steps of
-16”. This is how we get a range of frequencies that go up and down in pitch
like a siren.

Because the siren should last forever it’s wrapped in an infinite while
loop.

Importantly, we have introduced a new sort of a loop inside the while
loop: the for loop. In English it’s like saying, “for each item in some
collection, do some activity with it”. Specifically in the example above, it’s
saying, “for each frequency in the specified range of frequencies, play the
pitch of that frequency for 6 milliseconds”. Notice how the thing to do for
each item in a for loop is indented (as discussed earlier) so Python knows
exactly which code to run to handle the individual items.

Random

Sometimes you want to leave things to chance, or mix it up a little: you want
the device to act randomly.

MicroPython comes with a random module to make it easy to introduce chance
and a little chaos into your code. For example, here’s how to scroll a random
name across the display:

from microbit import *
import random

names = ["Mary", "Yolanda", "Damien", "Alia", "Kushal", "Mei Xiu", "Zoltan"]

display.scroll(random.choice(names))

The list (names) contains seven names defined as strings of characters.
The final line is nested (the “onion” effect introduced earlier): the
random.choice method takes the names list as an argument and returns
an item chosen at random. This item (the randomly chosen name) is the argument
for display.scroll.

Can you modify the list to include your own set of names?

Random Numbers

Random numbers are very useful. They’re common in games. Why else do we have
dice?

MicroPython comes with several useful random number methods. Here’s how to
make a simple dice:

from microbit import *
import random

display.show(str(random.randint(1, 6)))

Every time the device is reset it displays a number between 1 and 6. You’re
starting to get familiar with nesting, so it’s important to note that
random.randint returns a whole number between the two arguments, inclusive
(a whole number is also called an integer - hence the name of the method).
Notice that because display.show expects a character then we use the
str function to turn the numeric value into a character (we turn, for
example, 6 into "6").

If you know you’ll always want a number between 0 and N then use the
random.randrange method. If you give it a single argument it’ll return
random integers up to, but not including, the value of the argument N
(this is different to the behaviour of random.randint).

Sometimes you need numbers with a decimal point in them. These are called
floating point numbers and it’s possible to generate such a number with the
random.random method. This only returns values between 0.0 and 1.0
inclusive. If you need larger random floating point numbers add the results
of random.randrange and random.random like this:

from microbit import *
import random

answer = random.randrange(100) + random.random()
display.scroll(str(answer))

Seeds of Chaos

The random number generators used by computers are not truly random. They just
give random like results given a starting seed value. The seed is often
generated from random-ish values such as the current time and/or readings from
sensors such as the thermometers built into chips.

Sometimes you want to have repeatable random-ish behaviour: a source of
randomness that is reproducible. It’s like saying that you need the same five
random values each time you throw a dice.

This is easy to achieve by setting the seed value. Given a known seed the
random number generator will create the same set of random numbers. The seed is
set with random.seed and any whole number (integer). This version of the
dice program always produces the same results:

from microbit import *
import random

random.seed(1337)
while True:
 if button_a.was_pressed():
 display.show(str(random.randint(1, 6)))

Can you work out why this program needs us to press button A instead of reset
the device as in the first dice example..?

Movement

Your BBC micro:bit comes with an accelerometer. It measures movement along
three axes:

	X - tilting from left to right.

	Y - tilting forwards and backwards.

	Z - moving up and down.

There is a method for each axis that returns a positive or negative number
indicating a measurement in milli-g’s. When the reading is 0 you are “level”
along that particular axis.

For example, here’s a very simple spirit-level that uses get_x to measure
how level the device is along the X axis:

from microbit import *

while True:
 reading = accelerometer.get_x()
 if reading > 20:
 display.show("R")
 elif reading < -20:
 display.show("L")
 else:
 display.show("-")

If you hold the device flat it should display -; however, rotate it left or
right and it’ll show L and R respectively.

We want the device to constantly react to change, so we use an
infinite while loop. The first thing to happen within the body of the
loop is a measurement along the X axis which is called reading. Because
the accelerometer is so sensitive I’ve made level +/-20 in range. It’s why
the if and elif conditionals check for > 20 and < -20. The
else statement means that if the reading is between -20 and 20 then
we consider it level. For each of these conditions we use the display to show
the appropriate character.

There is also a get_y method for the Y axis and a get_z method for the
Z axis.

If you’ve ever wondered how a mobile phone knows which up to show the images on
its screen, it’s because it uses an accelerometer in exactly the same way as
the program above. Game controllers also contain accelerometers to help you
steer and move around in games.

Musical Mayhem

One of the most wonderful aspects of MicroPython on the BBC micro:bit is how it
lets you easily link different capabilities of the device together. For
example, let’s turn it into a musical instrument (of sorts).

Connect a speaker as you did in the music tutorial. Use crocodile clips to
attach pin 0 and GND to the positive and negative inputs on the speaker - it
doesn’t matter which way round they are connected to the speaker.

[image: tutorials/pin0-gnd.png]
What happens if we take the readings from the accelerometer and play them as
pitches? Let’s find out:

from microbit import *
import music

while True:
 music.pitch(accelerometer.get_y(), 10)

The key line is at the end and remarkably simple. We nest the reading from
the Y axis as the frequency to feed into the music.pitch method. We only
let it play for 10 milliseconds because we want the tone to change quickly as
the device is tipped. Because the device is in an infinite while loop it
is constantly reacting to changes in the Y axis measurement.

That’s it!

Tip the device forwards and backwards. If the reading along the Y axis is
positive it’ll change the pitch of the tone played by the micro:bit.

Imagine a whole symphony orchestra of these devices. Can you play a tune? How
would you improve the program to make the micro:bit sound more musical?

Gestures

The really interesting side-effect of having an accelerometer is gesture
detection. If you move your BBC micro:bit in a certain way (as a gesture) then
MicroPython is able to detect this.

MicroPython is able to recognise the following gestures: up, down,
left, right, face up, face down, freefall, 3g, 6g,
8g, shake. Gestures are always represented as strings. While most of
the names should be obvious, the 3g, 6g and 8g gestures apply when
the device encounters these levels of g-force (like when an astronaut is
launched into space).

To get the current gesture use the accelerometer.current_gesture method.
Its result is going to be one of the named gestures listed above. For example,
this program will only make your device happy if it is face up:

from microbit import *

while True:
 gesture = accelerometer.current_gesture()
 if gesture == "face up":
 display.show(Image.HAPPY)
 else:
 display.show(Image.ANGRY)

Once again, because we want the device to react to changing circumstances we
use a while loop. Within the scope of the loop the current gesture is
read and put into gesture. The if conditional checks if gesture is
equal to "face up" (Python uses == to test for equality, a single
equals sign = is used for assignment - just like how we assign the gesture
reading to the gesture object). If the gesture is equal to "face up"
then use the display to show a happy face. Otherwise, the device is made to
look angry!

Magic-8

A Magic-8 ball is a toy first invented in the 1950s. The idea is to ask
it a yes/no question, shake it and wait for it to reveal the truth. It’s rather
easy to turn into a program:

from microbit import *
import random

answers = [
 "It is certain",
 "It is decidedly so",
 "Without a doubt",
 "Yes, definitely",
 "You may rely on it",
 "As I see it, yes",
 "Most likely",
 "Outlook good",
 "Yes",
 "Signs point to yes",
 "Reply hazy try again",
 "Ask again later",
 "Better not tell you now",
 "Cannot predict now",
 "Concentrate and ask again",
 "Don't count on it"
 "My reply is no",
 "My sources say no",
 "Outlook not so good",
 "Very doubtful",
]

while True:
 display.show("8")
 if accelerometer.was_gesture("shake"):
 display.clear()
 sleep(1000)
 display.scroll(random.choice(answers))

Most of the program is a list called answers. The actual game is in the
while loop at the end.

The default state of the game is to show the character "8". However, the
program needs to detect if it has been shaken. The was_gesture method uses
its argument (in this case, the string "shake" because we want to detect
a shake) to return a True / False response. If the device was shaken
the if conditional drops into its block of code where it clears the screen,
waits for a second (so the device appears to be thinking about your question)
and displays a randomly chosen answer.

Why not ask it if this is the greatest program ever written? What could you do
to “cheat” and make the answer always positive or negative? (Hint: use the
buttons.)

Direction

There is a compass on the BBC micro:bit. If you ever make a weather station
use the device to work out the wind direction.

Compass

It can also tell you the direction of North like this:

from microbit import *

compass.calibrate()

while True:
 needle = ((15 - compass.heading()) // 30) % 12
 display.show(Image.ALL_CLOCKS[needle])

注解

You must calibrate the compass before taking readings. Failure to do so
will produce garbage results. The calibration method runs a fun little
game to help the device work out where it is in relation to the Earth’s
magnetic field.

To calibrate the compass, tilt the micro:bit around until a circle of pixels is
drawn on the outside edges of the display.

The program takes the compass.heading and, using some simple yet
cunning maths, floor division [https://en.wikipedia.org/wiki/Floor_and_ceiling_functions] // and modulo [https://en.wikipedia.org/wiki/Modulo_operation] %, works out the number of the clock hand to use to display on the screen
so that it is pointing roughly North.

Storage

Sometimes you need to store useful information. Such information is stored as
data: representation of information (in a digital form when stored on
computers). If you store data on a computer it should persist, even if you
switch the device off and on again.

Happily MicroPython on the micro:bit allows you to do this with a very simple
file system. Because of memory constraints there is approximately 30k of
storage available on the file system.

What is a file system?

It’s a means of storing and organising data in a persistent manner - any data
stored in a file system should survive restarts of the device. As the name
suggests, data stored on a file system is organised into files.

[image: tutorials/files.jpg]
A computer file is a named digital resource that’s stored on a file system.
Such resources contain useful information as data. This is exactly how a
paper file works. It’s a sort of named container that contains useful
information. Usually, both paper and digital files are named to indicate what
they contain. On computers it is common to end a file with a .something
suffix. Usually, the “something” indicates what type of data is used to
represent the information. For example, .txt indicates a text file,
.jpg a JPEG image and .mp3 sound data encoded as MP3.

Some file systems (such as the one found on your laptop or PC) allow you to
organise your files into directories: named containers that group related files
and sub-directories together. However, the file system provided by MicroPython
is a flat file system. A flat file system does not have directories - all
your files are just stored in the same place.

The Python programming language contains easy to use and powerful ways in which
to work with a computer’s file system. MicroPython on the micro:bit implements
a useful subset of these features to make is easy to read and write files on
the device, while also providing consistency with other versions of Python.

警告

Flashing your micro:bit will DESTROY ALL YOUR DATA since it re-writes all
the flash memory used by the device and the file system is stored in the
flash memory.

However, if you switch off your device the data will remain intact until
you either delete it or re-flash the device.

Open Sesame

Reading and writing a file on the file system is achieved by the open
function. Once a file is opened you can do stuff with it until you close it
(analogous with the way we use paper files). It is essential you close a file
so MicroPython knows you’ve finished with it.

The best way to make sure of this is to use the with statement like this:

with open('story.txt') as my_file:
 content = my_file.read()
print(content)

The with statement uses the open function to open a file and assign it
to an object. In the example above, the open function opens the file called
story.txt (obviously a text file containing a story of some sort).
The object that’s used to represent the file in the Python code is called
my_file. Subsequently, in the code block indented underneath the with
statement, the my_file object is used to read() the content of the
file and assign it to the content object.

Here’s the important point, the next line containing the print statement
is not indented. The code block associated with the with statement is only
the single line that reads the file. Once the code block associated with the
with statement is closed then Python (and MicroPython) will automatically
close the file for you. This is called context handling and the open
function creates objects that are context handlers for files.

Put simply, the scope of your interaction with a file is defined by the code
block associated with the with statement that opens the file.

Confused?

Don’t be. I’m simply saying your code should look like this:

with open('some_file') as some_object:
 # Do stuff with some_object in this block of code
 # associated with the with statement.

When the block is finished then MicroPython
automatically closes the file for you.

Just like a paper file, a digital file is opened for two reasons: to read its
content (as demonstrated above) or to write something to the file. The default
mode is to read the file. If you want to write to a file you need to tell the
open function in the following way:

with open('hello.txt', 'w') as my_file:
 my_file.write("Hello, World!")

Notice the 'w' argument is used to set the my_file object into write
mode. You could also pass an 'r' argument to set the file object to read
mode, but since this is the default, it’s often left off.

Writing data to the file is done with the (you guessed it) write
method that takes the string you want to write to the file as an argument. In
the example above, I write the text “Hello, World!” to a file called
“hello.txt”.

Simple!

注解

When you open a file and write (perhaps several times while the file is
in an open state) you will be writing OVER the content of the file if it
already exists.

If you want to append data to a file you should first read it, store the
content somewhere, close it, append your data to the content and then open
it to write again with the revised content.

While this is the case in MicroPython, “normal” Python can open
files to write in “append” mode. That we can’t do this on the micro:bit is
a result of the simple implementation of the file system.

OS SOS

As well as reading and writing files, Python can manipulate them. You
certainly need to know what files are on the file system and sometimes
you need to delete them too.

On a regular computer, it is the role of the operating system (like Windows,
OSX or Linux) to manage this on Python’s behalf. Such functionality is made
available in Python via a module called os. Since MicroPython is the
operating system we’ve decided to keep the appropriate functions in the os
module for consistency so you’ll know where to find them when you use “regular”
Python on a device like a laptop or Raspberry Pi.

Essentially, you can do three operations related to the file system: list the
files, remove a file and ask for the size of a file.

To list the files on your file system use the listdir function. It
returns a list of strings indicating the file names of the files on the file
system:

import os
my_files = os.listdir()

To delete a file use the remove function. It takes a string representing
the file name of the file you want to delete as an argument, like this:

import os
os.remove('filename.txt')

Finally, sometimes it’s useful to know how big a file is before reading from
it. To achieve this use the size function. Like the remove function, it
takes a string representing the file name of the file whose size you want to
know. It returns an integer (whole number) telling you the number of bytes the
file takes up:

import os
file_size = os.size('a_big_file.txt')

It’s all very well having a file system, but what if we want to put or get
files on or off the device?

Just use the microfs utility!

File Transfer

If you have Python installed on the computer you use to program your BBC
micro:bit then you can use a special utility called microfs (shortened to
ufs when using it in the command line). Full instructions for installing
and using all the features of microfs can be found
in its documentation [https://microfs.readthedocs.io].

Nevertheless it’s possible to do most of the things you need with just four
simple commands:

$ ufs ls
story.txt

The ls sub-command lists the files on the file system (it’s named after
the common Unix command, ls, that serves the same function).

$ ufs get story.txt

The get sub-command gets a file from the connected micro:bit and saves it
into your current location on your computer (it’s named after the get
command that’s part of the common file transfer protocol [FTP] that serves the
same function).

$ ufs rm story.txt

The rm sub-command removes the named from from the file system on the
connected micro:bit (it’s named after the common Unix command, rm, that
serves the same function).

$ ufs put story2.txt

Finally, the put sub-command puts a file from your computer onto the
connected device (it’s named after the put command that’s part of FTP that
serves the same function).

Mainly main.py

The file system also has an interesting property: if you just flashed the
MicroPython runtime onto the device then when it starts it’s simply waiting
for something to do. However, if you copy a special file called main.py
onto the file system, upon restarting the device, MicroPython will run the
contents of the main.py file.

Furthermore, if you copy other Python files onto the file system then you can
import them as you would any other Python module. For example, if you had
a hello.py file that contained the following simple code:

def say_hello(name="World"):
 return "Hello, {}!".format(name)

...you could import and use the say_hello function like this:

from microbit import display
from hello import say_hello

display.scroll(say_hello())

Of course, it results in the text “Hello, World!” scrolling across the
display. The important point is that such an example is split between two
Python modules and the import statement is used to share code.

注解

If you have flashed a script onto the device in addition to the MicroPython
runtime, then MicroPython will ignore main.py and run your embedded
script instead.

To flash just the MicroPython runtime, simply make sure the script you
may have written in your editor has zero characters in it. Once flashed
you’ll be able to copy over a main.py file.

Speech

警告

WARNING! THIS IS ALPHA CODE.

We reserve the right to change this API as development continues.

The quality of the speech is not great, merely “good enough”. Given the
constraints of the device you may encounter memory errors and / or
unexpected extra sounds during playback. It’s early days and we’re
improving the code for the speech synthesiser all the time. Bug reports
and pull requests are most welcome.

Computers and robots that talk feel more “human”.

So often we learn about what a computer is up to through a graphical user
interface (GUI). In the case of a BBC micro:bit the GUI is a 5x5 LED matrix,
which leaves a lot to be desired.

Getting the micro:bit talk to you is one way to express information in a fun,
efficient and useful way. To this end, we have integrated a simple speech
synthesiser based upon a reverse-engineered version of a synthesiser from the
early 1980s. It sounds very cute, in an “all humans must die” sort of a way.

With this in mind, we’re going to use the speech synthesiser to create...

DALEK Poetry

[image: tutorials/dalek.jpg]
It’s a little known fact that DALEKs enjoy poetry ~ especially limericks.
They go wild for anapestic meter with a strict AABBA form. Who’d have thought?

(Actually, as we’ll learn below, it’s The Doctor’s fault DALEKs like limericks,
much to the annoyance of Davros.)

In any case, we’re going to create a DALEK poetry recital on demand.

Say Something

Before the device can talk you need to plug in a speaker like this:

[image: tutorials/../speech.png]
The simplest way to get the device to speak is to import the speech module
and use the say function like this:

import speech

speech.say("Hello, World")

While this is cute it’s certainly not DALEK enough for our taste, so we need to
change some of the parameters that the speech synthesiser uses to produce the
voice. Our speech synthesiser is quite powerful in this respect because we can
change four parameters:

	pitch - how high or low the voice sounds (0 = high, 255 = Barry White)

	speed - how quickly the device talks (0 = impossible, 255 = bedtime story)

	mouth - how tight-lipped or overtly enunciating the voice sounds (0 = ventriloquist’s dummy, 255 = Foghorn Leghorn)

	throat - how relaxed or tense is the tone of voice (0 = falling apart, 255 = totally chilled)

Collectively, these parameters control the quality of sound - a.k.a. the
timbre. To be honest, the best way to get the tone of voice you want is to
experiment, use your judgement and adjust.

To adjust the settings you pass them in as arguments to the say function.
More details can be found in the speech module’s API documentation.

After some experimentation we’ve worked out this sounds quite DALEK-esque:

speech.say("I am a DALEK - EXTERMINATE", speed=120, pitch=100, throat=100, mouth=200)

Poetry on Demand

Being Cyborgs DALEKs use their robot capabilities to compose poetry and it
turns out that the algorithm they use is written in Python like this:

DALEK poetry generator, by The Doctor
import speech
import random
from microbit import sleep

Randomly select fragments to interpolate into the template.
location = random.choice(["brent", "trent", "kent", "tashkent"])
action = random.choice(["wrapped up", "covered", "sang to", "played games with"])
obj = random.choice(["head", "hand", "dog", "foot"])
prop = random.choice(["in a tent", "with cement", "with some scent",
 "that was bent"])
result = random.choice(["it ran off", "it glowed", "it blew up",
 "it turned blue"])
attitude = random.choice(["in the park", "like a shark", "for a lark",
 "with a bark"])
conclusion = random.choice(["where it went", "its intent", "why it went",
 "what it meant"])

A template of the poem. The {} are replaced by the named fragments.
poem = [
 "there was a young man from {}".format(location),
 "who {} his {} {}".format(action, obj, prop),
 "one night after dark",
 "{} {}".format(result, attitude),
 "and he never worked out {}".format(conclusion),
 "EXTERMINATE",
]

Loop over each line in the poem and use the speech module to recite it.
for line in poem:
 speech.say(line, speed=120, pitch=100, throat=100, mouth=200)
 sleep(500)

As the comments demonstrate, it’s a very simple in design:

	Named fragments (location, prop, attitude etc) are randomly generated from pre-defined lists of possible values. Note the use of random.choice to select a single item from a list.

	A template of a poem is defined as a list of stanzas with “holes” in them (denoted by {}) into which the named fragments will be put using the format method.

	Finally, Python loops over each item in the list of filled-in poetry stanzas and uses speech.say with the settings for the DALEK voice to recite the poem. A pause of 500 milliseconds is inserted between each line because even DALEKs need to take a breath.

Interestingly the original poetry related routines were written by Davros in
FORTRAN [https://en.wikipedia.org/wiki/Fortran] (an appropriate
language for DALEKS since you type it ALL IN CAPITAL LETTERS). However, The
Doctor went back in time to precisely the point between Davros’s
unit tests [https://en.wikipedia.org/wiki/Unit_testing]
passing and the
deployment pipeline [https://en.wikipedia.org/wiki/Continuous_delivery]
kicking in. At this instant he was able to insert a MicroPython interpreter
into the DALEK operating system and the code you see above into the DALEK
memory banks as a sort of long hidden Time-Lord
Easter Egg [https://en.wikipedia.org/wiki/Easter_egg_(media)] or
Rickroll [https://www.youtube.com/watch?v=dQw4w9WgXcQ].

Phonemes

You’ll notice that sometimes, the say function doesn’t accurately translate
from English words into the correct sound. To have fine grained control of the
output, use phonemes: the building-block sounds of language.

The advantage of using phonemes is that you don’t have to know how to spell!
Rather, you only have to know how to say the word in order to spell it
phonetically.

A full list of the phonemes the speech synthesiser understands can be found in
the API documentation for speech. Alternatively, save yourself a lot of time by
passing in English words to the translate function. It’ll return a first
approximation of the phonemes it would use to generate the audio. This result
can be hand-edited to improve the accuracy, inflection and emphasis (so it
sounds more natural).

The pronounce function is used for phoneme output like this:

speech.pronounce("/HEH5EH4EH3EH2EH2EH3EH4EH5EHLP.”)

How could you improve on The Doctor’s code to make it use phonemes?

Sing A Song of Micro:bit

By changing the pitch setting and calling the sing function it’s
possible to make the device sing (although it’s not going to win Eurovision any
time soon).

The mapping from pitch numbers to musical notes is shown below:

[image: ../_images/speech-pitch1.png]
The sing function must take phonemes and pitch as input like this:

speech.sing("#115DOWWWW")

Notice how the pitch to be sung is prepended to the phoneme with a hash
(#). The pitch will remain the same for subsequent phonemes until a new
pitch is annotated.

The following example demonstrates how all three generative functions (say,
pronounce and sing) can be used to produce speech like output:

Network

It is possible to connect devices together to send and receive
messages to and from each other. This is called a network. A network of
interconnected networks is called an internet. The Internet is an internet
of all the internets.

Networking is hard and this is reflected in the program described below.
However, the beautiful thing about this project is it contains all the common
aspects of network programming you need to know about. It’s also remarkably
simple and fun.

But first, let’s set the scene...

Connection

Imagine a network as a series of layers. At the very bottom is the most
fundamental aspect of communication: there needs to be some sort of way for
a signal to get from one device to the other. Sometimes this is done via a
radio connection, but in this example we’re simply going to use two wires.

[image: tutorials/network.png]
It is upon this foundation that we can build all the other layers in the
network stack.

As the diagram shows, blue and red micro:bits are connected via crocodile
leads. Both use pin 1 for output and pin 2 for input. The output from one
device is connected to the input on the other. It’s a bit like knowing which
way round to hold a telephone handset - one end has a microphone (the input)
and the other a speaker (the output). The recording of your voice via your
microphone is played out of the other person’s speaker. If you hold the
phone the wrong way up, you’ll get strange results!

It’s exactly the same in this instance: you must connect the wires properly!

Signal

The next layer in the network stack is the signal. Often this will depend
upon the characteristics of the connection. In our example it’s simply
digital on and off signals sent down the wires via the IO pins.

If you remember, it’s possible to use the IO pins like this:

pin1.write_digital(1) # switch the signal on
pin1.write_digital(0) # switch the signal off
input = pin2.read_digital() # read the value of the signal (either 1 or 0)

The next step involves describing how to use and handle a signal. For that we
need a...

Protocol

If you ever meet the Queen there are expectations about how you ought to
behave. For example, when she arrives you may bow or curtsey, if she offers her
hand politely shake it, refer to her as “your majesty” and thereafter as
“ma’am” and so on. This set of rules is called the royal protocol. A protocol
explains how to behave given a specific situation (such as meeting the
Queen). A protocol is pre-defined to ensure everyone understands what’s going
on before a given situation arises.

[image: tutorials/queen.jpg]
It is for this reason that we define and use protocols for communicating
messages via a computer network. Computers need to agree before hand how to
send and receive messages. Perhaps the best known protocol is the
hypertext transfer protocol (HTTP) used by the world wide web.

Another famous protocol for sending messages (that pre-dates computers) is
Morse code. It defines how to send character-based messages via on/off signals
of long or short durations. Often such signals are played as bleeps. Long
durations are called dashes (-) whereas short durations are dots (.).
By combining dashes and dots Morse defines a way to send characters. For
example, here’s how the standard Morse alphabet is defined:

.- A --- J ... S .---- 1 ----. 9
-... B -.- K - T ..--- 2 ----- 0
-.-. C .-.. L ..- U ...-- 3
-.. D -- M ...- V - 4
. E -. N .-- W 5
..-. F --- O -..- X -.... 6
--. G .--. P -.-- Y --... 7
.... H --.- Q --.. Z ---.. 8
.. I .-. R

Given the chart above, to send the character “H” the signal is switched on four
times for a short duration, indicating four dots (....). For the letter
“L” the signal is also switched on four times, but the second signal has a
longer duration (.-..).

Obviously, the timing of the signal is important: we need to tell a dot from a
dash. That’s another point of a protocol, to agree such things so everyone’s
implementation of the protocol will work with everyone elses. In this instance
we’ll just say that:

	A signal with a duration less than 250 milliseconds is a dot.

	A signal with a duration from 250 milliseconds to less than 500 milliseconds is a dash.

	Any other duration of signal is ignored.

	A pause / gap in the signal of greater than 500 milliseconds indicates the end of a character.

In this way, the sending of a letter “H” is defined as four “on” signals that
last no longer than 250 milliseconds each, followed by a pause of greater than
500 milliseconds (indicating the end of the character).

Message

We’re finally at a stage where we can build a message - a message that actually
means something to us humans. This is the top-most layer of our network
stack.

Using the protocol defined above I can send the following sequence of signals
down the physical wire to the other micro:bit:

...././.-../.-../---/.--/---/.-./.-../-..

Can you work out what it says?

Application

It’s all very well having a network stack, but you also need a way to
interact with it - some form of application to send and receive messages.
While HTTP is interesting most people don’t know about it and let their
web-browser handle it - the underlying network stack of the world wide web
is hidden (as it should be).

So, what sort of application should we write for the BBC micro:bit? How should
it work, from the user’s point of view?

Obviously, to send a message you should be able to input dots and dashes (we
can use button A for that). If we want to see the message we sent or just
received we should be able to trigger it to scroll across the display (we can
use button B for that). Finally, this being Morse code, if a speaker is
attached, we should be able to play the beeps as a form of aural feedback while
the user is entering their message.

The End Result

Here’s the program, in all its glory and annotated with plenty of comments so
you can see what’s going on:

from microbit import *
import music

A lookup table of morse codes and associated characters.
MORSE_CODE_LOOKUP = {
 ".-": "A",
 "-...": "B",
 "-.-.": "C",
 "-..": "D",
 ".": "E",
 "..-.": "F",
 "--.": "G",
 "....": "H",
 "..": "I",
 ".---": "J",
 "-.-": "K",
 ".-..": "L",
 "--": "M",
 "-.": "N",
 "---": "O",
 ".--.": "P",
 "--.-": "Q",
 ".-.": "R",
 "...": "S",
 "-": "T",
 "..-": "U",
 "...-": "V",
 ".--": "W",
 "-..-": "X",
 "-.--": "Y",
 "--..": "Z",
 ".----": "1",
 "..---": "2",
 "...--": "3",
 "....-": "4",
 ".....": "5",
 "-....": "6",
 "--...": "7",
 "---..": "8",
 "----.": "9",
 "-----": "0"
}

def decode(buffer):
 # Attempts to get the buffer of Morse code data from the lookup table. If
 # it's not there, just return a full stop.
 return MORSE_CODE_LOOKUP.get(buffer, '.')

How to display a single dot.
DOT = Image("00000:"
 "00000:"
 "00900:"
 "00000:"
 "00000:")

How to display a single dash.
DASH = Image("00000:"
 "00000:"
 "09990:"
 "00000:"
 "00000:")

To create a DOT you need to hold the button for less than 250ms.
DOT_THRESHOLD = 250
To create a DASH you need to hold the button for less than 500ms.
DASH_THRESHOLD = 500

Holds the incoming Morse signals.
buffer = ''
Holds the translated Morse as characters.
message = ''
The time from which the device has been waiting for the next keypress.
started_to_wait = running_time()

Put the device in a loop to wait for and react to key presses.
while True:
 # Work out how long the device has been waiting for a keypress.
 waiting = running_time() - started_to_wait
 # Reset the timestamp for the key_down_time.
 key_down_time = None
 # If button_a is held down, then...
 while button_a.is_pressed():
 # Play a beep - this is Morse code y'know ;-)
 music.pitch(880, 10)
 # Set pin1 (output) to "on"
 pin1.write_digital(1)
 # ...and if there's not a key_down_time then set it to now!
 if not key_down_time:
 key_down_time = running_time()
 # Alternatively, if pin2 (input) is getting a signal, pretend it's a
 # button_a key press...
 while pin2.read_digital():
 if not key_down_time:
 key_down_time = running_time()
 # Get the current time and call it key_up_time.
 key_up_time = running_time()
 # Set pin1 (output) to "off"
 pin1.write_digital(0)
 # If there's a key_down_time (created when button_a was first pressed
 # down).
 if key_down_time:
 # ... then work out for how long it was pressed.
 duration = key_up_time - key_down_time
 # If the duration is less than the max length for a "dot" press...
 if duration < DOT_THRESHOLD:
 # ... then add a dot to the buffer containing incoming Morse codes
 # and display a dot on the display.
 buffer += '.'
 display.show(DOT)
 # Else, if the duration is less than the max length for a "dash"
 # press... (but longer than that for a DOT ~ handled above)
 elif duration < DASH_THRESHOLD:
 # ... then add a dash to the buffer and display a dash.
 buffer += '-'
 display.show(DASH)
 # Otherwise, any other sort of keypress duration is ignored (this isn't
 # needed, but added for "understandability").
 else:
 pass
 # The button press has been handled, so reset the time from which the
 # device is starting to wait for a button press.
 started_to_wait = running_time()
 # Otherwise, there hasn't been a button_a press during this cycle of the
 # loop, so check there's not been a pause to indicate an end of the
 # incoming Morse code character. The pause must be longer than a DASH
 # code's duration.
 elif len(buffer) > 0 and waiting > DASH_THRESHOLD:
 # There is a buffer and it's reached the end of a code so...
 # Decode the incoming buffer.
 character = decode(buffer)
 # Reset the buffer to empty.
 buffer = ''
 # Show the decoded character.
 display.show(character)
 # Add the character to the message.
 message += character
 # Finally, if button_b was pressed while all the above was going on...
 if button_b.was_pressed():
 # ... display the message,
 display.scroll(message)
 # then reset it to empty (ready for a new message).
 message = ''

How would you improve it? Can you change the definition of a dot and a dash so
speedy Morse code users can use it? What happens if both devices are sending at
the same time? What might you do to handle this situation?

Radio

Interaction at a distance feels like magic.

Magic might be useful if you’re an elf, wizard or unicorn, but such things only
exist in stories.

However, there’s something much better than magic: physics!

Wireless interaction is all about physics: radio waves (a type of
electromagnetic radiation, similar to visible light) have some sort of property
(such as their amplitude, phase or pulse width) modulated by a transmitter in
such a way that information can be encoded and, thus, broadcast. When radio
waves encounter an electrical conductor (i.e. an aerial), they cause an
alternating current from which the information in the waves can be extracted
and transformed back into its original form.

Layers upon Layers

If you remember, networks are built in layers.

The most fundamental requirement for a network is some sort of connection that
allows a signal to get from one device to the other. In our networking
tutorial we used wires connected to the I/O pins. Thanks to the radio module we
can do away with wires and use the physics summarised above as the invisible
connection between devices.

The next layer up in the network stack is also different from the example in
the networking tutorial. With the wired example we used digital on and off to
send and read a signal from the pins. With the built-in radio on the
micro:bit the smallest useful part of the signal is a byte.

Bytes

A byte is a unit of information that (usually) consists of eight bits. A bit is
the smallest possible unit of information since it can only be in two states:
on or off.

Bytes work like a sort of abacus: each position in the byte is like a
column in an abacus - they represent an associated number. In an abacus these
are usually thousands, hundreds, tens and units (in UK parlance). In a byte
they are 128, 64, 32, 16, 8, 4, 2 and 1. As bits (on/off
signals) are sent over the air, they are re-combined into bytes by the
recipient.

Have you spotted the pattern? (Hint: base 2.)

By adding the numbers associated with the positions in a byte that are set to
“on” we can represent numbers between 0 and 255. The image below shows how this
works with five bits and counting from zero to 32:

[image: ../_images/binary_count.gif]
If we can agree what each one of the 255 numbers (encoded by a byte) represents ~ such as a character ~ then we can start to send text one character per byte
at a time.

Funnily enough, people have already
thought of this [https://en.wikipedia.org/wiki/ASCII] ~ using bytes to
encode and decode information is commonplace. This approximately corresponds to
the Morse-code “protocol” layer in the wired networking example.

A really great series of child (and teacher) friendly explanations of “all
things bytes” can be found at the
CS unplugged [http://csunplugged.org/binary-numbers/] website.

Addressing

The problem with radio is that you can’t transmit directly to one person.
Anyone with an appropriate aerial can receive the messages you transmit. As a
result it’s important to be able to differentiate who should be receiving
broadcasts.

The way the radio built into the micro:bit solves this problem is quite simple:

	It’s possible to tune the radio to different channels (numbered 0-100). This works in exactly the same way as kids’ walkie-talkie radios: everyone tunes into the same channel and everyone hears what everyone else broadcasts via that channel. As with walkie-talkies, if you use adjacent channels there is a slight possibility of interference.

	The radio module allows you to specify two pieces of information: an address and a group. The address is like a postal address whereas a group is like a specific recipient at the address. The important thing is the radio will filter out messages that it receives that do not match your address and group. As a result, it’s important to pre-arrange the address and group your application is going to use.

Of course, the micro:bit is still receiving broadcast messages for other
address/group combinations. The important thing is you don’t need to worry
about filtering those out. Nevertheless, if someone were clever enough, they
could just read all the wireless network traffic no matter what the target
address/group was supposed to be. In this case, it’s essential to use
encrypted means of communication so only the desired recipient can actually
read the message that was broadcast. Cryptography is a fascinating subject but,
unfortunately, beyond the scope of this tutorial.

Fireflies

This is a firefly:

[image: tutorials/firefly.gif]
It’s a sort of bug that uses bioluminescence to signal (without wires) to its
friends. Here’s what they look like when they signal to each other:

[image: tutorials/fireflies.gif]
The BBC have rather a beautiful video [http://www.bbc.com/earth/story/20160224-worlds-largest-gathering-of-synchronised-fireflies] of fireflies available online.

We’re going to use the radio module to create something akin to a swarm of
fireflies signalling to each other.

First import radio to make the functions available to your Python program.
Then call the radio.on() function to turn the radio on. Since
the radio draws power and takes up memory we’ve made it so you decide
when it is enabled (there is, of course a radio.off() function).

At this point the radio module is configured to sensible defaults that make
it compatible with other platforms that may target the BBC micro:bit. It is
possible to control many of the features discussed above (such as channel and
addressing) as well as the amount of power used to broadcast messages and the
amount of RAM the incoming message queue will take up. The API documentation
contains all the information you need to configure the radio to your needs.

Assuming we’re happy with the defaults, the simplest way to send a message is
like this:

radio.send("a message")

The example uses the send function to simply broadcast the string
“a message”. To receive a message is even easier:

new_message = radio.receive()

As messages are received they are put on a message queue. The receive
function returns the oldest message from the queue as a string, making space
for a new incoming message. If the message queue fills up, then new incoming
messages are ignored.

That’s really all there is to it! (Although the radio module is also powerful
enough that you can send any arbitrary type of data, not just strings. See the
API documentation for how this works.)

Armed with this knowledge, it’s simple to make micro:bit fireflies like this:

The import stuff happens in the event loop. First, it checks if button A was
pressed and, if it was, uses the radio to send the message “flash”. Then it
reads any messages from the message queue with radio.receive(). If there is
a message it sleeps a short, random period of time (to make the display more
interesting) and uses display.show() to animate a firefly flash. Finally,
to make things a bit exciting, it chooses a random number so that it has a 1 in
10 chance of re-broadcasting the “flash” message to anyone else (this is how
it’s possible to sustain the firefly display among several devices). If it
decides to re-broadcast then it waits for half a second (so the display from
the initial flash message has chance to die down) before sending
the “flash” signal again. Because this code is enclosed within a while True
block, it loops back to the beginning of the event loop and repeats this
process forever.

The end result (using a group of micro:bits) should look something like this:

[image: ../_images/mb-firefly.gif]

Next Steps

These tutorials are only the first steps in using MicroPython with the
BBC micro:bit. A musical analogy: you’ve got a basic understanding of
a very simple instrument and confidently play “Three Blind Mice”.

This is an achievement to build upon.

Ahead of you is an exciting journey to becoming a virtuoso coder.

You will encounter frustration, failure and foolishness. When you do please
remember that you’re not alone. Python has a secret weapon: the most amazing
community of programmers on the planet. Connect with this community and you
will make friends, find mentors, support each other and share resources.

The examples in the tutorials are simple to explain but may not be the simplest
or most efficient implementations. We’ve left out lots of really fun stuff so
we could concentrate on arming you with the basics. If you really want to
know how to make MicroPython fly on the BBC micro:bit then read the API
reference documentation. It contains information about all the capabilities
available to you.

Explore, experiment and be fearless trying things out ~ for these are the
attributes of a virtuoso coder. To encourage you we have hidden a number of
Easter eggs in MicroPython and the code editors (both TouchDevelop and Mu).
They’re fun rewards for looking “under the hood” and “poking with a stick”.

Such skill in Python is valuable: it’s one of the world’s most popular
professional programming languages.

Amaze us with your code! Make things that delight us! Most of all, have fun!

Happy hacking!

Hello, World!

用一种新的语言开始编程的传统方法是让你的计算机说, “Hello, World!”.

[image: ../_images/scroll-hello1.gif]
使用MicroPython非常容易:

from microbit import *
display.scroll("Hello, World!")

第一行代码比较特殊:

from microbit import *

...告诉MicroPython获取所有资源并在TurnipBit上执行。 这个模块就是 microbit (模块
是预先存在的代码库。)。 当使用 import 的东西就是告诉MicroPython要使用它, 并且 * 是Python的*everything*。
因此, from microbit import * 的意思是, “我想能够从TurnipBit代码库中使用一切”。

第二行:

display.scroll("Hello, World!")

...告诉micropython使用显示滚动字符的字符串”Hello, World!”。 The display part of that line is an object from the
microbit module that represents the device’s physical display (we say
“object” instead of “thingy”, “whatsit” or “doodah”). We can tell the display
to do things with a full-stop . followed by what looks like a command (in
fact it’s something we call a method). In this case we’re using the
scroll method. Since scroll needs to know what characters to scroll
across the physical display we specify them between double quotes (")
within parenthesis ((and)). These are called the arguments. So,
display.scroll("Hello, World!") means, in English, “I want you to use the
display to scroll the text ‘Hello, World!’”. If a method doesn’t need any
arguments we make this clear by using empty parenthesis like this: ().

Copy the “Hello, World!” code into your editor and flash it onto the device.
Can you work out how to change the message? Can you make it say hello to you?
For example, I might make it say “Hello, Nicholas!”. Here’s a clue, you need to
change the scroll method’s argument.

警告

It may not work. :-)

This is where things get fun and MicroPython tries to be helpful. If
it encounters an error it will scroll a helpful message on the micro:bit’s
display. If it can, it will tell you the line number for where the error
can be found.

Python expects you to type EXACTLY the right thing. So, for instance,
Microbit, microbit and microBit are all different things to
Python. If MicroPython complains about a NameError it’s probably
because you’ve typed something inaccurately. It’s like the difference
between referring to “Nicholas” and “Nicolas”. They’re two different people
but their names look very similar.

If MicroPython complains about a SyntaxError you’ve simply typed code
in a way that MicroPython can’t understand. Check you’re not missing any
special characters like " or :. It’s like putting. a full stop in
the middle of a sentence. It’s hard to understand exactly what you mean.

Your microbit may stop responding: you cannot flash new code to it or
enter commands into the REPL. If this happens, try power cycling it. That
is, unplug the USB cable (and battery cable if it’s connected), then plug
the cable back in again. You may also need to quit and re-start your code
editor application.

Images

MicroPython is about as good at art as you can be if the only thing you have is
a 5x5 grid of red LEDs (light emitting diodes - the things that light up on the
front of the device). MicroPython gives you quite a lot of control over the
display so you can create all sorts of interesting effects.

MicroPython comes with lots of built-in pictures to show on the display.
For example, to make the device appear happy you type:

from microbit import *
display.show(Image.HAPPY)

I suspect you can remember what the first line does. The second line uses the
display object to show a built-in image. The happy image we want to
display is a part of the Image object and called HAPPY. We tell
show to use it by putting it between the parenthesis ((and)).

[image: tutorials/happy.png]
Here’s a list of the built-in images:

	Image.HEART

	Image.HEART_SMALL

	Image.HAPPY

	Image.SMILE

	Image.SAD

	Image.CONFUSED

	Image.ANGRY

	Image.ASLEEP

	Image.SURPRISED

	Image.SILLY

	Image.FABULOUS

	Image.MEH

	Image.YES

	Image.NO

	Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5,
Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

	Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E,
Image.ARROW_SE, Image.ARROW_S, Image.ARROW_SW,
Image.ARROW_W, Image.ARROW_NW

	Image.TRIANGLE

	Image.TRIANGLE_LEFT

	Image.CHESSBOARD

	Image.DIAMOND

	Image.DIAMOND_SMALL

	Image.SQUARE

	Image.SQUARE_SMALL

	Image.RABBIT

	Image.COW

	Image.MUSIC_CROTCHET

	Image.MUSIC_QUAVER

	Image.MUSIC_QUAVERS

	Image.PITCHFORK

	Image.XMAS

	Image.PACMAN

	Image.TARGET

	Image.TSHIRT

	Image.ROLLERSKATE

	Image.DUCK

	Image.HOUSE

	Image.TORTOISE

	Image.BUTTERFLY

	Image.STICKFIGURE

	Image.GHOST

	Image.SWORD

	Image.GIRAFFE

	Image.SKULL

	Image.UMBRELLA

	Image.SNAKE

There’s quite a lot! Why not modify the code that makes the micro:bit look
happy to see what some of the other built-in images look like? (Just replace
Image.HAPPY with one of the built-in images listed above.)

DIY Images

Of course, you want to make your own image to display on the micro:bit, right?

That’s easy.

Each LED pixel on the physical display can be set to one of ten values. If a
pixel is set to 0 (zero) then it’s off. It literally has zero brightness.
However, if it is set to 9 then it is at its brightest level. The values
1 to 8 represent the brightness levels between off (0) and full on
(9).

Armed with this information, it’s possible to create a new image like this:

from microbit import *

boat = Image("05050:"
 "05050:"
 "05050:"
 "99999:"
 "09990")

display.show(boat)

(When run, the device should display an old-fashioned “Blue Peter” sailing ship
with the masts dimmer than the boat’s hull.)

Have you figured out how to draw a picture? Have you noticed that each line of
the physical display is represented by a line of numbers ending in : and
enclosed between " double quotes? Each number specifies a brightness.
There are five lines of five numbers so it’s possible to specify the individual
brightness for each of the five pixels on each of the five lines on the
physical display. That’s how to create a new image.

Simple!

In fact, you don’t need to write this over several lines. If you think you can
keep track of each line, you can rewrite it like this:

boat = Image("05050:05050:05050:99999:09990")

Animation

Static images are fun, but it’s even more fun to make them move. This is also
amazingly simple to do with MicroPython ~ just use a list of images!

Here is a shopping list:

Eggs
Bacon
Tomatoes

Here’s how you’d represent this list in Python:

shopping = ["Eggs", "Bacon", "Tomatoes"]

I’ve simply created a list called shopping and it contains three items.
Python knows it’s a list because it’s enclosed in square brackets ([and
]). Items in the list are separated by a comma (,) and in this instance
the items are three strings of characters: "Eggs", "Bacon" and
"Tomatoes". We know they are strings of characters because they’re enclosed
in quotation marks ".

You can store anything in a list with Python. Here’s a list of numbers:

primes = [2, 3, 5, 7, 11, 13, 17, 19]

注解

Numbers don’t need to be quoted since they represent a value (rather than a
string of characters). It’s the difference between 2 (the numeric value
2) and "2" (the character/digit representing the number 2). Don’t worry
if this doesn’t make sense right now. You’ll soon get used to it.

It’s even possible to store different sorts of things in the same list:

mixed_up_list = ["hello!", 1.234, Image.HAPPY]

Notice that last item? It was an image!

We can tell MicroPython to animate a list of images. Luckily we have a
couple of lists of images already built in. They’re called Image.ALL_CLOCKS
and Image.ALL_ARROWS:

from microbit import *

display.show(Image.ALL_CLOCKS, loop=True, delay=100)

As with a single image, we use display.show to show it on the
device’s display. However, we tell MicroPython to use Image.ALL_CLOCKS and
it understands that it needs to show each image in the list, one after the
other. We also tell MicroPython to keep looping over the list of images (so
the animation lasts forever) by saying loop=True. Furthermore, we tell it
that we want the delay between each image to be only 100 milliseconds (a tenth
of a second) with the argument delay=100.

Can you work out how to animate over the Image.ALL_ARROWS list? How do you
avoid looping forever (hint: the opposite of True is False although
the default value for loop is False)? Can you change the speed of the
animation?

Finally, here’s how to create your own animation. In my example I’m going to
make my boat sink into the bottom of the display:

from microbit import *

boat1 = Image("05050:"
 "05050:"
 "05050:"
 "99999:"
 "09990")

boat2 = Image("00000:"
 "05050:"
 "05050:"
 "05050:"
 "99999")

boat3 = Image("00000:"
 "00000:"
 "05050:"
 "05050:"
 "05050")

boat4 = Image("00000:"
 "00000:"
 "00000:"
 "05050:"
 "05050")

boat5 = Image("00000:"
 "00000:"
 "00000:"
 "00000:"
 "05050")

boat6 = Image("00000:"
 "00000:"
 "00000:"
 "00000:"
 "00000")

all_boats = [boat1, boat2, boat3, boat4, boat5, boat6]
display.show(all_boats, delay=200)

Here’s how the code works:

	I create six boat images in exactly the same way I described above.

	Then, I put them all into a list that I call all_boats.

	Finally, I ask display.show to animate the list with a delay of 200 milliseconds.

	Since I’ve not set loop=True the boat will only sink once (thus making my animation scientifically accurate). :-)

What would you animate? Can you animate special effects? How would you make an
image fade out and then fade in again?

Buttons

So far we have created code that makes the device do something. This is called
output. However, we also need the device to react to things. Such things are
called inputs.

It’s easy to remember: output is what the device puts out to the world
whereas input is what goes into the device for it to process.

The most obvious means of input on the micro:bit are its two buttons, labelled
A and B. Somehow, we need MicroPython to react to button presses.

This is remarkably simple:

from microbit import *

sleep(10000)
display.scroll(str(button_a.get_presses()))

All this script does is sleep for ten thousand milliseconds (i.e. 10 seconds)
and then scrolls the number of times you pressed button A. That’s it!

While it’s a pretty useless script, it introduces a couple of interesting new
ideas:

	The sleep function will make the micro:bit sleep for a certain number
of milliseconds. If you want a pause in your program, this is how to do it.
A function is just like a method, but it isn’t attached by a dot to an
object.

	There is an object called button_a and it allows you to get the number
of times it has been pressed with the get_presses method.

Since get_presses gives a numeric value and display.scroll only
displays characters, we need to convert the numeric value into a string of
characters. We do this with the str function (short for “string” ~ it
converts things into strings of characters).

The third line is a bit like an onion. If the parenthesis are the
onion skins then you’ll notice that display.scroll contains str that
itself contains button_a.get_presses. Python attempts to work out the
inner-most answer first before starting on the next layer out. This is called
nesting - the coding equivalent of a Russian Matrioshka doll.

[image: ../_images/matrioshka.jpg]
Let’s pretend you’ve pressed the button 10 times. Here’s how Python works out
what’s happening on the third line:

Python sees the complete line and gets the value of get_presses:

display.scroll(str(button_a.get_presses()))

Now that Python knows how many button presses there have been, it converts the
numeric value into a string of characters:

display.scroll(str(10))

Finally, Python knows what to scroll across the display:

display.scroll("10")

While this might seem like a lot of work, MicroPython makes this happen
extraordinarily fast.

Event Loops

Often you need your program to hang around waiting for something to happen. To
do this you make it loop around a piece of code that defines how to react to
certain expected events such as a button press.

To make loops in Python you use the while keyword. It checks if something
is True. If it is, it runs a block of code called the body of the loop.
If it isn’t, it breaks out of the loop (ignoring the body) and the rest of the
program can continue.

Python makes it easy to define blocks of code. Say I have a to-do list written
on a piece of paper. It probably looks something like this:

Shopping
Fix broken gutter
Mow the lawn

If I wanted to break down my to-do list a bit further, I might write something
like this:

Shopping:
 Eggs
 Bacon
 Tomatoes
Fix broken gutter:
 Borrow ladder from next door
 Find hammer and nails
 Return ladder
Mow the lawn:
 Check lawn around pond for frogs
 Check mower fuel level

It’s obvious that the main tasks are broken down into sub-tasks that are
indented underneath the main task to which they are related. So Eggs,
Bacon and Tomatoes are obviously related to Shopping. By indenting
things we make it easy to see, at a glance, how the tasks relate to each other.

This is called nesting. We use nesting to define blocks of code like this:

from microbit import *

while running_time() < 10000:
 display.show(Image.ASLEEP)

display.show(Image.SURPRISED)

The running_time function returns the number of milliseconds since the
device started.

The while running_time() < 10000: line checks if the running time is less
than 10000 milliseconds (i.e. 10 seconds). If it is, and this is where we can
see scoping in action, then it’ll display Image.ASLEEP. Notice how this is
indented underneath the while statement just like in our to-do list.

Obviously, if the running time is equal to or greater than 10000 milliseconds
then the display will show Image.SURPRISED. Why? Because the while
condition will be False (running_time is no longer < 10000). In that
case the loop is finished and the program will continue after the while
loop’s block of code. It’ll look like your device is asleep for 10
seconds before waking up with a surprised look on its face.

Try it!

Handling an Event

If we want MicroPython to react to button press events we should put it into
an infinite loop and check if the button is_pressed.

An infinite loop is easy:

while True:
 # Do stuff

(Remember, while checks if something is True to work out if it should
run its block of code. Since True is obviously True for all time, you
get an infinite loop!)

Let’s make a very simple cyber-pet. It’s always sad unless you’re pressing
button A. If you press button B it dies. (I realise this isn’t a very
pleasant game, so perhaps you can figure out how to improve it.):

from microbit import *

while True:
 if button_a.is_pressed():
 display.show(Image.HAPPY)
 elif button_b.is_pressed():
 break
 else:
 display.show(Image.SAD)

display.clear()

Can you see how we check what buttons are pressed? We used if,
elif (short for “else if”) and else. These are called conditionals
and work like this:

if something is True:
 # do one thing
elif some other thing is True:
 # do another thing
else:
 # do yet another thing.

This is remarkably similar to English!

The is_pressed method only produces two results: True or False.
If you’re pressing the button it returns True, otherwise it returns
False. The code above is saying, in English, “for ever and ever, if
button A is pressed then show a happy face, else if button B is pressed break
out of the loop, otherwise display a sad face.” We break out of the loop (stop
the program running for ever and ever) with the break statement.

At the very end, when the cyber-pet is dead, we clear the display.

Can you think of ways to make this game less tragic? How would you check if
both buttons are pressed? (Hint: Python has and, or and not
logical operators to help check multiple truth statements (things that
produce either True or False results).

Input/Output

There are strips of metal along the bottom edge of the BBC micro:bit that make
it look as if the device has teeth. These are the input/output pins (or I/O pins
for short).

[image: tutorials/blue-microbit.png]
Some of the pins are bigger than others so it’s possible to attach crocodile
clips to them. These are the ones labelled 0, 1, 2, 3V and GND (computers
always start counting from zero). If you attach an edge connector board to the
device it’s possible to plug in wires connected to the other (smaller) pins.

Each pin on the BBC micro:bit is represented by an object called pinN
where N is the pin number. So, for example, to do things with the pin
labelled with a 0 (zero), use the object called pin0.

Simple!

These objects have various methods associated with them depending upon what
the specific pin is capable of.

Ticklish Python

The simplest example of input via the pins is a check to see if they are
touched. So, you can tickle your device to make it laugh like this:

from microbit import *

while True:
 if pin0.is_touched():
 display.show(Image.HAPPY)
 else:
 display.show(Image.SAD)

With one hand, hold your device by the GND pin. Then, with your other hand,
touch (or tickle) the 0 (zero) pin. You should see the display change from
grumpy to happy!

This is a form of very basic input measurement. However, the fun really starts
when you plug in circuits and other devices via the pins.

Bleeps and Bloops

The simplest thing we can attach to the device is a Piezo buzzer. We’re going
to use it for output.

[image: ../_images/piezo_buzzer.jpg]
These small devices play a high-pitched bleep when connected to a circuit. To
attach one to your BBC micro:bit you should attach crocodile clips to pin 0 and
GND (as shown below).

[image: tutorials/pin0-gnd.png]
The wire from pin 0 should be attached to the positive connector on the buzzer
and the wire from GND to the negative connector.

The following program will cause the buzzer to make a sound:

from microbit import *

pin0.write_digital(1)

This is fun for about 5 seconds and then you’ll want to make the horrible
squeaking stop. Let’s improve our example and make the device bleep:

from microbit import *

while True:
 pin0.write_digital(1)
 sleep(20)
 pin0.write_digital(0)
 sleep(480)

Can you work out how this script works? Remember that 1 is “on” and 0
is “off” in the digital world.

The device is put into an infinite loop and immediately switches pin 0 on. This
causes the buzzer to emit a beep. While the buzzer is beeping, the device
sleeps for twenty milliseconds and then switches pin 0 off. This gives the
effect of a short bleep. Finally, the device sleeps for 480 milliseconds before
looping back and starting all over again. This means you’ll get two bleeps per
second (one every 500 milliseconds).

We’ve made a very simple metronome!

Music

MicroPython on the BBC micro:bit comes with a powerful music and sound module.
It’s very easy to generate bleeps and bloops from the device if you attach a
speaker. Use crocodile clips to attach pin 0 and GND to the positive and
negative inputs on the speaker - it doesn’t matter which way round they are
connected to the speaker.

[image: tutorials/pin0-gnd.png]

注解

Do not attempt this with a Piezo buzzer - such buzzers are only able to
play a single tone.

Let’s play some music:

import music

music.play(music.NYAN)

Notice that we import the music module. It contains methods used to make
and control sound.

MicroPython has quite a lot of built-in melodies. Here’s a complete list:

	music.DADADADUM

	music.ENTERTAINER

	music.PRELUDE

	music.ODE

	music.NYAN

	music.RINGTONE

	music.FUNK

	music.BLUES

	music.BIRTHDAY

	music.WEDDING

	music.FUNERAL

	music.PUNCHLINE

	music.PYTHON

	music.BADDY

	music.CHASE

	music.BA_DING

	music.WAWAWAWAA

	music.JUMP_UP

	music.JUMP_DOWN

	music.POWER_UP

	music.POWER_DOWN

Take the example code and change the melody. Which one is your favourite? How
would you use such tunes as signals or cues?

Wolfgang Amadeus Microbit

Creating your own tunes is easy!

Each note has a name (like C# or F), an octave (telling MicroPython how
high or low the note should be played) and a duration (how
long it lasts through time). Octaves are indicated by a number ~ 0 is the
lowest octave, 4 contains middle C and 8 is about as high as you’ll ever need
unless you’re making music for dogs. Durations are also expressed as numbers.
The higher the value of the duration the longer it will last. Such
values are related to each other - for instance, a duration of 4 will last
twice as long as a duration 2 (and so on). If you use the note name R
then MicroPython will play a rest (i.e. silence) for the specified duration.

Each note is expressed as a string of characters like this:

NOTE[octave][:duration]

For example, "A1:4" refers to the note named A in octave number 1
to be played for a duration of 4.

Make a list of notes to create a melody (it’s equivalent to creating an
animation with a list of images). For example, here’s how to make MicroPython
play opening of “Frere Jaques”:

import music

tune = ["C4:4", "D4:4", "E4:4", "C4:4", "C4:4", "D4:4", "E4:4", "C4:4",
 "E4:4", "F4:4", "G4:8", "E4:4", "F4:4", "G4:8"]
music.play(tune)

注解

MicroPython helps you to simplify such melodies. It’ll remember the octave
and duration values until you next change them. As a result, the example
above can be re-written as:

import music

tune = ["C4:4", "D", "E", "C", "C", "D", "E", "C", "E", "F", "G:8",
 "E:4", "F", "G:8"]
music.play(tune)

Notice how the octave and duration values only change when they have to.
It’s a lot less typing and simpler to read.

Sound Effects

MicroPython lets you make tones that are not musical notes. For example, here’s
how to create a Police siren effect:

import music

while True:
 for freq in range(880, 1760, 16):
 music.pitch(freq, 6)
 for freq in range(1760, 880, -16):
 music.pitch(freq, 6)

Notice how the music.pitch method is used in this instance. It expects a
frequency. For example, the frequency of 440 is the same as a concert A
used to tune a symphony orchestra.

In the example above the range function is used to generate ranges of
numeric values. These numbers are used to define the pitch of the tone. The
three arguments for the range function are the start value, end value and
step size. Therefore, the first use of range is saying, in English, “create
a range of numbers between 880 and 1760 in steps of 16”. The second use of
range is saying, “create a range of values between 1760 and 880 in steps of
-16”. This is how we get a range of frequencies that go up and down in pitch
like a siren.

Because the siren should last forever it’s wrapped in an infinite while
loop.

Importantly, we have introduced a new sort of a loop inside the while
loop: the for loop. In English it’s like saying, “for each item in some
collection, do some activity with it”. Specifically in the example above, it’s
saying, “for each frequency in the specified range of frequencies, play the
pitch of that frequency for 6 milliseconds”. Notice how the thing to do for
each item in a for loop is indented (as discussed earlier) so Python knows
exactly which code to run to handle the individual items.

Random

Sometimes you want to leave things to chance, or mix it up a little: you want
the device to act randomly.

MicroPython comes with a random module to make it easy to introduce chance
and a little chaos into your code. For example, here’s how to scroll a random
name across the display:

from microbit import *
import random

names = ["Mary", "Yolanda", "Damien", "Alia", "Kushal", "Mei Xiu", "Zoltan"]

display.scroll(random.choice(names))

The list (names) contains seven names defined as strings of characters.
The final line is nested (the “onion” effect introduced earlier): the
random.choice method takes the names list as an argument and returns
an item chosen at random. This item (the randomly chosen name) is the argument
for display.scroll.

Can you modify the list to include your own set of names?

Random Numbers

Random numbers are very useful. They’re common in games. Why else do we have
dice?

MicroPython comes with several useful random number methods. Here’s how to
make a simple dice:

from microbit import *
import random

display.show(str(random.randint(1, 6)))

Every time the device is reset it displays a number between 1 and 6. You’re
starting to get familiar with nesting, so it’s important to note that
random.randint returns a whole number between the two arguments, inclusive
(a whole number is also called an integer - hence the name of the method).
Notice that because display.show expects a character then we use the
str function to turn the numeric value into a character (we turn, for
example, 6 into "6").

If you know you’ll always want a number between 0 and N then use the
random.randrange method. If you give it a single argument it’ll return
random integers up to, but not including, the value of the argument N
(this is different to the behaviour of random.randint).

Sometimes you need numbers with a decimal point in them. These are called
floating point numbers and it’s possible to generate such a number with the
random.random method. This only returns values between 0.0 and 1.0
inclusive. If you need larger random floating point numbers add the results
of random.randrange and random.random like this:

from microbit import *
import random

answer = random.randrange(100) + random.random()
display.scroll(str(answer))

Seeds of Chaos

The random number generators used by computers are not truly random. They just
give random like results given a starting seed value. The seed is often
generated from random-ish values such as the current time and/or readings from
sensors such as the thermometers built into chips.

Sometimes you want to have repeatable random-ish behaviour: a source of
randomness that is reproducible. It’s like saying that you need the same five
random values each time you throw a dice.

This is easy to achieve by setting the seed value. Given a known seed the
random number generator will create the same set of random numbers. The seed is
set with random.seed and any whole number (integer). This version of the
dice program always produces the same results:

from microbit import *
import random

random.seed(1337)
while True:
 if button_a.was_pressed():
 display.show(str(random.randint(1, 6)))

Can you work out why this program needs us to press button A instead of reset
the device as in the first dice example..?

Movement

Your BBC micro:bit comes with an accelerometer. It measures movement along
three axes:

	X - tilting from left to right.

	Y - tilting forwards and backwards.

	Z - moving up and down.

There is a method for each axis that returns a positive or negative number
indicating a measurement in milli-g’s. When the reading is 0 you are “level”
along that particular axis.

For example, here’s a very simple spirit-level that uses get_x to measure
how level the device is along the X axis:

from microbit import *

while True:
 reading = accelerometer.get_x()
 if reading > 20:
 display.show("R")
 elif reading < -20:
 display.show("L")
 else:
 display.show("-")

If you hold the device flat it should display -; however, rotate it left or
right and it’ll show L and R respectively.

We want the device to constantly react to change, so we use an
infinite while loop. The first thing to happen within the body of the
loop is a measurement along the X axis which is called reading. Because
the accelerometer is so sensitive I’ve made level +/-20 in range. It’s why
the if and elif conditionals check for > 20 and < -20. The
else statement means that if the reading is between -20 and 20 then
we consider it level. For each of these conditions we use the display to show
the appropriate character.

There is also a get_y method for the Y axis and a get_z method for the
Z axis.

If you’ve ever wondered how a mobile phone knows which up to show the images on
its screen, it’s because it uses an accelerometer in exactly the same way as
the program above. Game controllers also contain accelerometers to help you
steer and move around in games.

Musical Mayhem

One of the most wonderful aspects of MicroPython on the BBC micro:bit is how it
lets you easily link different capabilities of the device together. For
example, let’s turn it into a musical instrument (of sorts).

Connect a speaker as you did in the music tutorial. Use crocodile clips to
attach pin 0 and GND to the positive and negative inputs on the speaker - it
doesn’t matter which way round they are connected to the speaker.

[image: tutorials/pin0-gnd.png]
What happens if we take the readings from the accelerometer and play them as
pitches? Let’s find out:

from microbit import *
import music

while True:
 music.pitch(accelerometer.get_y(), 10)

The key line is at the end and remarkably simple. We nest the reading from
the Y axis as the frequency to feed into the music.pitch method. We only
let it play for 10 milliseconds because we want the tone to change quickly as
the device is tipped. Because the device is in an infinite while loop it
is constantly reacting to changes in the Y axis measurement.

That’s it!

Tip the device forwards and backwards. If the reading along the Y axis is
positive it’ll change the pitch of the tone played by the micro:bit.

Imagine a whole symphony orchestra of these devices. Can you play a tune? How
would you improve the program to make the micro:bit sound more musical?

Gestures

The really interesting side-effect of having an accelerometer is gesture
detection. If you move your BBC micro:bit in a certain way (as a gesture) then
MicroPython is able to detect this.

MicroPython is able to recognise the following gestures: up, down,
left, right, face up, face down, freefall, 3g, 6g,
8g, shake. Gestures are always represented as strings. While most of
the names should be obvious, the 3g, 6g and 8g gestures apply when
the device encounters these levels of g-force (like when an astronaut is
launched into space).

To get the current gesture use the accelerometer.current_gesture method.
Its result is going to be one of the named gestures listed above. For example,
this program will only make your device happy if it is face up:

from microbit import *

while True:
 gesture = accelerometer.current_gesture()
 if gesture == "face up":
 display.show(Image.HAPPY)
 else:
 display.show(Image.ANGRY)

Once again, because we want the device to react to changing circumstances we
use a while loop. Within the scope of the loop the current gesture is
read and put into gesture. The if conditional checks if gesture is
equal to "face up" (Python uses == to test for equality, a single
equals sign = is used for assignment - just like how we assign the gesture
reading to the gesture object). If the gesture is equal to "face up"
then use the display to show a happy face. Otherwise, the device is made to
look angry!

Magic-8

A Magic-8 ball is a toy first invented in the 1950s. The idea is to ask
it a yes/no question, shake it and wait for it to reveal the truth. It’s rather
easy to turn into a program:

from microbit import *
import random

answers = [
 "It is certain",
 "It is decidedly so",
 "Without a doubt",
 "Yes, definitely",
 "You may rely on it",
 "As I see it, yes",
 "Most likely",
 "Outlook good",
 "Yes",
 "Signs point to yes",
 "Reply hazy try again",
 "Ask again later",
 "Better not tell you now",
 "Cannot predict now",
 "Concentrate and ask again",
 "Don't count on it"
 "My reply is no",
 "My sources say no",
 "Outlook not so good",
 "Very doubtful",
]

while True:
 display.show("8")
 if accelerometer.was_gesture("shake"):
 display.clear()
 sleep(1000)
 display.scroll(random.choice(answers))

Most of the program is a list called answers. The actual game is in the
while loop at the end.

The default state of the game is to show the character "8". However, the
program needs to detect if it has been shaken. The was_gesture method uses
its argument (in this case, the string "shake" because we want to detect
a shake) to return a True / False response. If the device was shaken
the if conditional drops into its block of code where it clears the screen,
waits for a second (so the device appears to be thinking about your question)
and displays a randomly chosen answer.

Why not ask it if this is the greatest program ever written? What could you do
to “cheat” and make the answer always positive or negative? (Hint: use the
buttons.)

Direction

There is a compass on the BBC micro:bit. If you ever make a weather station
use the device to work out the wind direction.

Compass

It can also tell you the direction of North like this:

from microbit import *

compass.calibrate()

while True:
 needle = ((15 - compass.heading()) // 30) % 12
 display.show(Image.ALL_CLOCKS[needle])

注解

You must calibrate the compass before taking readings. Failure to do so
will produce garbage results. The calibration method runs a fun little
game to help the device work out where it is in relation to the Earth’s
magnetic field.

To calibrate the compass, tilt the micro:bit around until a circle of pixels is
drawn on the outside edges of the display.

The program takes the compass.heading and, using some simple yet
cunning maths, floor division [https://en.wikipedia.org/wiki/Floor_and_ceiling_functions] // and modulo [https://en.wikipedia.org/wiki/Modulo_operation] %, works out the number of the clock hand to use to display on the screen
so that it is pointing roughly North.

Storage

Sometimes you need to store useful information. Such information is stored as
data: representation of information (in a digital form when stored on
computers). If you store data on a computer it should persist, even if you
switch the device off and on again.

Happily MicroPython on the micro:bit allows you to do this with a very simple
file system. Because of memory constraints there is approximately 30k of
storage available on the file system.

What is a file system?

It’s a means of storing and organising data in a persistent manner - any data
stored in a file system should survive restarts of the device. As the name
suggests, data stored on a file system is organised into files.

[image: tutorials/files.jpg]
A computer file is a named digital resource that’s stored on a file system.
Such resources contain useful information as data. This is exactly how a
paper file works. It’s a sort of named container that contains useful
information. Usually, both paper and digital files are named to indicate what
they contain. On computers it is common to end a file with a .something
suffix. Usually, the “something” indicates what type of data is used to
represent the information. For example, .txt indicates a text file,
.jpg a JPEG image and .mp3 sound data encoded as MP3.

Some file systems (such as the one found on your laptop or PC) allow you to
organise your files into directories: named containers that group related files
and sub-directories together. However, the file system provided by MicroPython
is a flat file system. A flat file system does not have directories - all
your files are just stored in the same place.

The Python programming language contains easy to use and powerful ways in which
to work with a computer’s file system. MicroPython on the micro:bit implements
a useful subset of these features to make is easy to read and write files on
the device, while also providing consistency with other versions of Python.

警告

Flashing your micro:bit will DESTROY ALL YOUR DATA since it re-writes all
the flash memory used by the device and the file system is stored in the
flash memory.

However, if you switch off your device the data will remain intact until
you either delete it or re-flash the device.

Open Sesame

Reading and writing a file on the file system is achieved by the open
function. Once a file is opened you can do stuff with it until you close it
(analogous with the way we use paper files). It is essential you close a file
so MicroPython knows you’ve finished with it.

The best way to make sure of this is to use the with statement like this:

with open('story.txt') as my_file:
 content = my_file.read()
print(content)

The with statement uses the open function to open a file and assign it
to an object. In the example above, the open function opens the file called
story.txt (obviously a text file containing a story of some sort).
The object that’s used to represent the file in the Python code is called
my_file. Subsequently, in the code block indented underneath the with
statement, the my_file object is used to read() the content of the
file and assign it to the content object.

Here’s the important point, the next line containing the print statement
is not indented. The code block associated with the with statement is only
the single line that reads the file. Once the code block associated with the
with statement is closed then Python (and MicroPython) will automatically
close the file for you. This is called context handling and the open
function creates objects that are context handlers for files.

Put simply, the scope of your interaction with a file is defined by the code
block associated with the with statement that opens the file.

Confused?

Don’t be. I’m simply saying your code should look like this:

with open('some_file') as some_object:
 # Do stuff with some_object in this block of code
 # associated with the with statement.

When the block is finished then MicroPython
automatically closes the file for you.

Just like a paper file, a digital file is opened for two reasons: to read its
content (as demonstrated above) or to write something to the file. The default
mode is to read the file. If you want to write to a file you need to tell the
open function in the following way:

with open('hello.txt', 'w') as my_file:
 my_file.write("Hello, World!")

Notice the 'w' argument is used to set the my_file object into write
mode. You could also pass an 'r' argument to set the file object to read
mode, but since this is the default, it’s often left off.

Writing data to the file is done with the (you guessed it) write
method that takes the string you want to write to the file as an argument. In
the example above, I write the text “Hello, World!” to a file called
“hello.txt”.

Simple!

注解

When you open a file and write (perhaps several times while the file is
in an open state) you will be writing OVER the content of the file if it
already exists.

If you want to append data to a file you should first read it, store the
content somewhere, close it, append your data to the content and then open
it to write again with the revised content.

While this is the case in MicroPython, “normal” Python can open
files to write in “append” mode. That we can’t do this on the micro:bit is
a result of the simple implementation of the file system.

OS SOS

As well as reading and writing files, Python can manipulate them. You
certainly need to know what files are on the file system and sometimes
you need to delete them too.

On a regular computer, it is the role of the operating system (like Windows,
OSX or Linux) to manage this on Python’s behalf. Such functionality is made
available in Python via a module called os. Since MicroPython is the
operating system we’ve decided to keep the appropriate functions in the os
module for consistency so you’ll know where to find them when you use “regular”
Python on a device like a laptop or Raspberry Pi.

Essentially, you can do three operations related to the file system: list the
files, remove a file and ask for the size of a file.

To list the files on your file system use the listdir function. It
returns a list of strings indicating the file names of the files on the file
system:

import os
my_files = os.listdir()

To delete a file use the remove function. It takes a string representing
the file name of the file you want to delete as an argument, like this:

import os
os.remove('filename.txt')

Finally, sometimes it’s useful to know how big a file is before reading from
it. To achieve this use the size function. Like the remove function, it
takes a string representing the file name of the file whose size you want to
know. It returns an integer (whole number) telling you the number of bytes the
file takes up:

import os
file_size = os.size('a_big_file.txt')

It’s all very well having a file system, but what if we want to put or get
files on or off the device?

Just use the microfs utility!

File Transfer

If you have Python installed on the computer you use to program your BBC
micro:bit then you can use a special utility called microfs (shortened to
ufs when using it in the command line). Full instructions for installing
and using all the features of microfs can be found
in its documentation [https://microfs.readthedocs.io].

Nevertheless it’s possible to do most of the things you need with just four
simple commands:

$ ufs ls
story.txt

The ls sub-command lists the files on the file system (it’s named after
the common Unix command, ls, that serves the same function).

$ ufs get story.txt

The get sub-command gets a file from the connected micro:bit and saves it
into your current location on your computer (it’s named after the get
command that’s part of the common file transfer protocol [FTP] that serves the
same function).

$ ufs rm story.txt

The rm sub-command removes the named from from the file system on the
connected micro:bit (it’s named after the common Unix command, rm, that
serves the same function).

$ ufs put story2.txt

Finally, the put sub-command puts a file from your computer onto the
connected device (it’s named after the put command that’s part of FTP that
serves the same function).

Mainly main.py

The file system also has an interesting property: if you just flashed the
MicroPython runtime onto the device then when it starts it’s simply waiting
for something to do. However, if you copy a special file called main.py
onto the file system, upon restarting the device, MicroPython will run the
contents of the main.py file.

Furthermore, if you copy other Python files onto the file system then you can
import them as you would any other Python module. For example, if you had
a hello.py file that contained the following simple code:

def say_hello(name="World"):
 return "Hello, {}!".format(name)

...you could import and use the say_hello function like this:

from microbit import display
from hello import say_hello

display.scroll(say_hello())

Of course, it results in the text “Hello, World!” scrolling across the
display. The important point is that such an example is split between two
Python modules and the import statement is used to share code.

注解

If you have flashed a script onto the device in addition to the MicroPython
runtime, then MicroPython will ignore main.py and run your embedded
script instead.

To flash just the MicroPython runtime, simply make sure the script you
may have written in your editor has zero characters in it. Once flashed
you’ll be able to copy over a main.py file.

Speech

警告

WARNING! THIS IS ALPHA CODE.

We reserve the right to change this API as development continues.

The quality of the speech is not great, merely “good enough”. Given the
constraints of the device you may encounter memory errors and / or
unexpected extra sounds during playback. It’s early days and we’re
improving the code for the speech synthesiser all the time. Bug reports
and pull requests are most welcome.

Computers and robots that talk feel more “human”.

So often we learn about what a computer is up to through a graphical user
interface (GUI). In the case of a BBC micro:bit the GUI is a 5x5 LED matrix,
which leaves a lot to be desired.

Getting the micro:bit talk to you is one way to express information in a fun,
efficient and useful way. To this end, we have integrated a simple speech
synthesiser based upon a reverse-engineered version of a synthesiser from the
early 1980s. It sounds very cute, in an “all humans must die” sort of a way.

With this in mind, we’re going to use the speech synthesiser to create...

DALEK Poetry

[image: tutorials/dalek.jpg]
It’s a little known fact that DALEKs enjoy poetry ~ especially limericks.
They go wild for anapestic meter with a strict AABBA form. Who’d have thought?

(Actually, as we’ll learn below, it’s The Doctor’s fault DALEKs like limericks,
much to the annoyance of Davros.)

In any case, we’re going to create a DALEK poetry recital on demand.

Say Something

Before the device can talk you need to plug in a speaker like this:

[image: tutorials/../speech.png]
The simplest way to get the device to speak is to import the speech module
and use the say function like this:

import speech

speech.say("Hello, World")

While this is cute it’s certainly not DALEK enough for our taste, so we need to
change some of the parameters that the speech synthesiser uses to produce the
voice. Our speech synthesiser is quite powerful in this respect because we can
change four parameters:

	pitch - how high or low the voice sounds (0 = high, 255 = Barry White)

	speed - how quickly the device talks (0 = impossible, 255 = bedtime story)

	mouth - how tight-lipped or overtly enunciating the voice sounds (0 = ventriloquist’s dummy, 255 = Foghorn Leghorn)

	throat - how relaxed or tense is the tone of voice (0 = falling apart, 255 = totally chilled)

Collectively, these parameters control the quality of sound - a.k.a. the
timbre. To be honest, the best way to get the tone of voice you want is to
experiment, use your judgement and adjust.

To adjust the settings you pass them in as arguments to the say function.
More details can be found in the speech module’s API documentation.

After some experimentation we’ve worked out this sounds quite DALEK-esque:

speech.say("I am a DALEK - EXTERMINATE", speed=120, pitch=100, throat=100, mouth=200)

Poetry on Demand

Being Cyborgs DALEKs use their robot capabilities to compose poetry and it
turns out that the algorithm they use is written in Python like this:

DALEK poetry generator, by The Doctor
import speech
import random
from microbit import sleep

Randomly select fragments to interpolate into the template.
location = random.choice(["brent", "trent", "kent", "tashkent"])
action = random.choice(["wrapped up", "covered", "sang to", "played games with"])
obj = random.choice(["head", "hand", "dog", "foot"])
prop = random.choice(["in a tent", "with cement", "with some scent",
 "that was bent"])
result = random.choice(["it ran off", "it glowed", "it blew up",
 "it turned blue"])
attitude = random.choice(["in the park", "like a shark", "for a lark",
 "with a bark"])
conclusion = random.choice(["where it went", "its intent", "why it went",
 "what it meant"])

A template of the poem. The {} are replaced by the named fragments.
poem = [
 "there was a young man from {}".format(location),
 "who {} his {} {}".format(action, obj, prop),
 "one night after dark",
 "{} {}".format(result, attitude),
 "and he never worked out {}".format(conclusion),
 "EXTERMINATE",
]

Loop over each line in the poem and use the speech module to recite it.
for line in poem:
 speech.say(line, speed=120, pitch=100, throat=100, mouth=200)
 sleep(500)

As the comments demonstrate, it’s a very simple in design:

	Named fragments (location, prop, attitude etc) are randomly generated from pre-defined lists of possible values. Note the use of random.choice to select a single item from a list.

	A template of a poem is defined as a list of stanzas with “holes” in them (denoted by {}) into which the named fragments will be put using the format method.

	Finally, Python loops over each item in the list of filled-in poetry stanzas and uses speech.say with the settings for the DALEK voice to recite the poem. A pause of 500 milliseconds is inserted between each line because even DALEKs need to take a breath.

Interestingly the original poetry related routines were written by Davros in
FORTRAN [https://en.wikipedia.org/wiki/Fortran] (an appropriate
language for DALEKS since you type it ALL IN CAPITAL LETTERS). However, The
Doctor went back in time to precisely the point between Davros’s
unit tests [https://en.wikipedia.org/wiki/Unit_testing]
passing and the
deployment pipeline [https://en.wikipedia.org/wiki/Continuous_delivery]
kicking in. At this instant he was able to insert a MicroPython interpreter
into the DALEK operating system and the code you see above into the DALEK
memory banks as a sort of long hidden Time-Lord
Easter Egg [https://en.wikipedia.org/wiki/Easter_egg_(media)] or
Rickroll [https://www.youtube.com/watch?v=dQw4w9WgXcQ].

Phonemes

You’ll notice that sometimes, the say function doesn’t accurately translate
from English words into the correct sound. To have fine grained control of the
output, use phonemes: the building-block sounds of language.

The advantage of using phonemes is that you don’t have to know how to spell!
Rather, you only have to know how to say the word in order to spell it
phonetically.

A full list of the phonemes the speech synthesiser understands can be found in
the API documentation for speech. Alternatively, save yourself a lot of time by
passing in English words to the translate function. It’ll return a first
approximation of the phonemes it would use to generate the audio. This result
can be hand-edited to improve the accuracy, inflection and emphasis (so it
sounds more natural).

The pronounce function is used for phoneme output like this:

speech.pronounce("/HEH5EH4EH3EH2EH2EH3EH4EH5EHLP.”)

How could you improve on The Doctor’s code to make it use phonemes?

Sing A Song of Micro:bit

By changing the pitch setting and calling the sing function it’s
possible to make the device sing (although it’s not going to win Eurovision any
time soon).

The mapping from pitch numbers to musical notes is shown below:

[image: ../_images/speech-pitch1.png]
The sing function must take phonemes and pitch as input like this:

speech.sing("#115DOWWWW")

Notice how the pitch to be sung is prepended to the phoneme with a hash
(#). The pitch will remain the same for subsequent phonemes until a new
pitch is annotated.

The following example demonstrates how all three generative functions (say,
pronounce and sing) can be used to produce speech like output:

Network

It is possible to connect devices together to send and receive
messages to and from each other. This is called a network. A network of
interconnected networks is called an internet. The Internet is an internet
of all the internets.

Networking is hard and this is reflected in the program described below.
However, the beautiful thing about this project is it contains all the common
aspects of network programming you need to know about. It’s also remarkably
simple and fun.

But first, let’s set the scene...

Connection

Imagine a network as a series of layers. At the very bottom is the most
fundamental aspect of communication: there needs to be some sort of way for
a signal to get from one device to the other. Sometimes this is done via a
radio connection, but in this example we’re simply going to use two wires.

[image: tutorials/network.png]
It is upon this foundation that we can build all the other layers in the
network stack.

As the diagram shows, blue and red micro:bits are connected via crocodile
leads. Both use pin 1 for output and pin 2 for input. The output from one
device is connected to the input on the other. It’s a bit like knowing which
way round to hold a telephone handset - one end has a microphone (the input)
and the other a speaker (the output). The recording of your voice via your
microphone is played out of the other person’s speaker. If you hold the
phone the wrong way up, you’ll get strange results!

It’s exactly the same in this instance: you must connect the wires properly!

Signal

The next layer in the network stack is the signal. Often this will depend
upon the characteristics of the connection. In our example it’s simply
digital on and off signals sent down the wires via the IO pins.

If you remember, it’s possible to use the IO pins like this:

pin1.write_digital(1) # switch the signal on
pin1.write_digital(0) # switch the signal off
input = pin2.read_digital() # read the value of the signal (either 1 or 0)

The next step involves describing how to use and handle a signal. For that we
need a...

Protocol

If you ever meet the Queen there are expectations about how you ought to
behave. For example, when she arrives you may bow or curtsey, if she offers her
hand politely shake it, refer to her as “your majesty” and thereafter as
“ma’am” and so on. This set of rules is called the royal protocol. A protocol
explains how to behave given a specific situation (such as meeting the
Queen). A protocol is pre-defined to ensure everyone understands what’s going
on before a given situation arises.

[image: tutorials/queen.jpg]
It is for this reason that we define and use protocols for communicating
messages via a computer network. Computers need to agree before hand how to
send and receive messages. Perhaps the best known protocol is the
hypertext transfer protocol (HTTP) used by the world wide web.

Another famous protocol for sending messages (that pre-dates computers) is
Morse code. It defines how to send character-based messages via on/off signals
of long or short durations. Often such signals are played as bleeps. Long
durations are called dashes (-) whereas short durations are dots (.).
By combining dashes and dots Morse defines a way to send characters. For
example, here’s how the standard Morse alphabet is defined:

.- A --- J ... S .---- 1 ----. 9
-... B -.- K - T ..--- 2 ----- 0
-.-. C .-.. L ..- U ...-- 3
-.. D -- M ...- V - 4
. E -. N .-- W 5
..-. F --- O -..- X -.... 6
--. G .--. P -.-- Y --... 7
.... H --.- Q --.. Z ---.. 8
.. I .-. R

Given the chart above, to send the character “H” the signal is switched on four
times for a short duration, indicating four dots (....). For the letter
“L” the signal is also switched on four times, but the second signal has a
longer duration (.-..).

Obviously, the timing of the signal is important: we need to tell a dot from a
dash. That’s another point of a protocol, to agree such things so everyone’s
implementation of the protocol will work with everyone elses. In this instance
we’ll just say that:

	A signal with a duration less than 250 milliseconds is a dot.

	A signal with a duration from 250 milliseconds to less than 500 milliseconds is a dash.

	Any other duration of signal is ignored.

	A pause / gap in the signal of greater than 500 milliseconds indicates the end of a character.

In this way, the sending of a letter “H” is defined as four “on” signals that
last no longer than 250 milliseconds each, followed by a pause of greater than
500 milliseconds (indicating the end of the character).

Message

We’re finally at a stage where we can build a message - a message that actually
means something to us humans. This is the top-most layer of our network
stack.

Using the protocol defined above I can send the following sequence of signals
down the physical wire to the other micro:bit:

...././.-../.-../---/.--/---/.-./.-../-..

Can you work out what it says?

Application

It’s all very well having a network stack, but you also need a way to
interact with it - some form of application to send and receive messages.
While HTTP is interesting most people don’t know about it and let their
web-browser handle it - the underlying network stack of the world wide web
is hidden (as it should be).

So, what sort of application should we write for the BBC micro:bit? How should
it work, from the user’s point of view?

Obviously, to send a message you should be able to input dots and dashes (we
can use button A for that). If we want to see the message we sent or just
received we should be able to trigger it to scroll across the display (we can
use button B for that). Finally, this being Morse code, if a speaker is
attached, we should be able to play the beeps as a form of aural feedback while
the user is entering their message.

The End Result

Here’s the program, in all its glory and annotated with plenty of comments so
you can see what’s going on:

from microbit import *
import music

A lookup table of morse codes and associated characters.
MORSE_CODE_LOOKUP = {
 ".-": "A",
 "-...": "B",
 "-.-.": "C",
 "-..": "D",
 ".": "E",
 "..-.": "F",
 "--.": "G",
 "....": "H",
 "..": "I",
 ".---": "J",
 "-.-": "K",
 ".-..": "L",
 "--": "M",
 "-.": "N",
 "---": "O",
 ".--.": "P",
 "--.-": "Q",
 ".-.": "R",
 "...": "S",
 "-": "T",
 "..-": "U",
 "...-": "V",
 ".--": "W",
 "-..-": "X",
 "-.--": "Y",
 "--..": "Z",
 ".----": "1",
 "..---": "2",
 "...--": "3",
 "....-": "4",
 ".....": "5",
 "-....": "6",
 "--...": "7",
 "---..": "8",
 "----.": "9",
 "-----": "0"
}

def decode(buffer):
 # Attempts to get the buffer of Morse code data from the lookup table. If
 # it's not there, just return a full stop.
 return MORSE_CODE_LOOKUP.get(buffer, '.')

How to display a single dot.
DOT = Image("00000:"
 "00000:"
 "00900:"
 "00000:"
 "00000:")

How to display a single dash.
DASH = Image("00000:"
 "00000:"
 "09990:"
 "00000:"
 "00000:")

To create a DOT you need to hold the button for less than 250ms.
DOT_THRESHOLD = 250
To create a DASH you need to hold the button for less than 500ms.
DASH_THRESHOLD = 500

Holds the incoming Morse signals.
buffer = ''
Holds the translated Morse as characters.
message = ''
The time from which the device has been waiting for the next keypress.
started_to_wait = running_time()

Put the device in a loop to wait for and react to key presses.
while True:
 # Work out how long the device has been waiting for a keypress.
 waiting = running_time() - started_to_wait
 # Reset the timestamp for the key_down_time.
 key_down_time = None
 # If button_a is held down, then...
 while button_a.is_pressed():
 # Play a beep - this is Morse code y'know ;-)
 music.pitch(880, 10)
 # Set pin1 (output) to "on"
 pin1.write_digital(1)
 # ...and if there's not a key_down_time then set it to now!
 if not key_down_time:
 key_down_time = running_time()
 # Alternatively, if pin2 (input) is getting a signal, pretend it's a
 # button_a key press...
 while pin2.read_digital():
 if not key_down_time:
 key_down_time = running_time()
 # Get the current time and call it key_up_time.
 key_up_time = running_time()
 # Set pin1 (output) to "off"
 pin1.write_digital(0)
 # If there's a key_down_time (created when button_a was first pressed
 # down).
 if key_down_time:
 # ... then work out for how long it was pressed.
 duration = key_up_time - key_down_time
 # If the duration is less than the max length for a "dot" press...
 if duration < DOT_THRESHOLD:
 # ... then add a dot to the buffer containing incoming Morse codes
 # and display a dot on the display.
 buffer += '.'
 display.show(DOT)
 # Else, if the duration is less than the max length for a "dash"
 # press... (but longer than that for a DOT ~ handled above)
 elif duration < DASH_THRESHOLD:
 # ... then add a dash to the buffer and display a dash.
 buffer += '-'
 display.show(DASH)
 # Otherwise, any other sort of keypress duration is ignored (this isn't
 # needed, but added for "understandability").
 else:
 pass
 # The button press has been handled, so reset the time from which the
 # device is starting to wait for a button press.
 started_to_wait = running_time()
 # Otherwise, there hasn't been a button_a press during this cycle of the
 # loop, so check there's not been a pause to indicate an end of the
 # incoming Morse code character. The pause must be longer than a DASH
 # code's duration.
 elif len(buffer) > 0 and waiting > DASH_THRESHOLD:
 # There is a buffer and it's reached the end of a code so...
 # Decode the incoming buffer.
 character = decode(buffer)
 # Reset the buffer to empty.
 buffer = ''
 # Show the decoded character.
 display.show(character)
 # Add the character to the message.
 message += character
 # Finally, if button_b was pressed while all the above was going on...
 if button_b.was_pressed():
 # ... display the message,
 display.scroll(message)
 # then reset it to empty (ready for a new message).
 message = ''

How would you improve it? Can you change the definition of a dot and a dash so
speedy Morse code users can use it? What happens if both devices are sending at
the same time? What might you do to handle this situation?

Radio

Interaction at a distance feels like magic.

Magic might be useful if you’re an elf, wizard or unicorn, but such things only
exist in stories.

However, there’s something much better than magic: physics!

Wireless interaction is all about physics: radio waves (a type of
electromagnetic radiation, similar to visible light) have some sort of property
(such as their amplitude, phase or pulse width) modulated by a transmitter in
such a way that information can be encoded and, thus, broadcast. When radio
waves encounter an electrical conductor (i.e. an aerial), they cause an
alternating current from which the information in the waves can be extracted
and transformed back into its original form.

Layers upon Layers

If you remember, networks are built in layers.

The most fundamental requirement for a network is some sort of connection that
allows a signal to get from one device to the other. In our networking
tutorial we used wires connected to the I/O pins. Thanks to the radio module we
can do away with wires and use the physics summarised above as the invisible
connection between devices.

The next layer up in the network stack is also different from the example in
the networking tutorial. With the wired example we used digital on and off to
send and read a signal from the pins. With the built-in radio on the
micro:bit the smallest useful part of the signal is a byte.

Bytes

A byte is a unit of information that (usually) consists of eight bits. A bit is
the smallest possible unit of information since it can only be in two states:
on or off.

Bytes work like a sort of abacus: each position in the byte is like a
column in an abacus - they represent an associated number. In an abacus these
are usually thousands, hundreds, tens and units (in UK parlance). In a byte
they are 128, 64, 32, 16, 8, 4, 2 and 1. As bits (on/off
signals) are sent over the air, they are re-combined into bytes by the
recipient.

Have you spotted the pattern? (Hint: base 2.)

By adding the numbers associated with the positions in a byte that are set to
“on” we can represent numbers between 0 and 255. The image below shows how this
works with five bits and counting from zero to 32:

[image: ../_images/binary_count.gif]
If we can agree what each one of the 255 numbers (encoded by a byte) represents ~ such as a character ~ then we can start to send text one character per byte
at a time.

Funnily enough, people have already
thought of this [https://en.wikipedia.org/wiki/ASCII] ~ using bytes to
encode and decode information is commonplace. This approximately corresponds to
the Morse-code “protocol” layer in the wired networking example.

A really great series of child (and teacher) friendly explanations of “all
things bytes” can be found at the
CS unplugged [http://csunplugged.org/binary-numbers/] website.

Addressing

The problem with radio is that you can’t transmit directly to one person.
Anyone with an appropriate aerial can receive the messages you transmit. As a
result it’s important to be able to differentiate who should be receiving
broadcasts.

The way the radio built into the micro:bit solves this problem is quite simple:

	It’s possible to tune the radio to different channels (numbered 0-100). This works in exactly the same way as kids’ walkie-talkie radios: everyone tunes into the same channel and everyone hears what everyone else broadcasts via that channel. As with walkie-talkies, if you use adjacent channels there is a slight possibility of interference.

	The radio module allows you to specify two pieces of information: an address and a group. The address is like a postal address whereas a group is like a specific recipient at the address. The important thing is the radio will filter out messages that it receives that do not match your address and group. As a result, it’s important to pre-arrange the address and group your application is going to use.

Of course, the micro:bit is still receiving broadcast messages for other
address/group combinations. The important thing is you don’t need to worry
about filtering those out. Nevertheless, if someone were clever enough, they
could just read all the wireless network traffic no matter what the target
address/group was supposed to be. In this case, it’s essential to use
encrypted means of communication so only the desired recipient can actually
read the message that was broadcast. Cryptography is a fascinating subject but,
unfortunately, beyond the scope of this tutorial.

Fireflies

This is a firefly:

[image: tutorials/firefly.gif]
It’s a sort of bug that uses bioluminescence to signal (without wires) to its
friends. Here’s what they look like when they signal to each other:

[image: tutorials/fireflies.gif]
The BBC have rather a beautiful video [http://www.bbc.com/earth/story/20160224-worlds-largest-gathering-of-synchronised-fireflies] of fireflies available online.

We’re going to use the radio module to create something akin to a swarm of
fireflies signalling to each other.

First import radio to make the functions available to your Python program.
Then call the radio.on() function to turn the radio on. Since
the radio draws power and takes up memory we’ve made it so you decide
when it is enabled (there is, of course a radio.off() function).

At this point the radio module is configured to sensible defaults that make
it compatible with other platforms that may target the BBC micro:bit. It is
possible to control many of the features discussed above (such as channel and
addressing) as well as the amount of power used to broadcast messages and the
amount of RAM the incoming message queue will take up. The API documentation
contains all the information you need to configure the radio to your needs.

Assuming we’re happy with the defaults, the simplest way to send a message is
like this:

radio.send("a message")

The example uses the send function to simply broadcast the string
“a message”. To receive a message is even easier:

new_message = radio.receive()

As messages are received they are put on a message queue. The receive
function returns the oldest message from the queue as a string, making space
for a new incoming message. If the message queue fills up, then new incoming
messages are ignored.

That’s really all there is to it! (Although the radio module is also powerful
enough that you can send any arbitrary type of data, not just strings. See the
API documentation for how this works.)

Armed with this knowledge, it’s simple to make micro:bit fireflies like this:

The import stuff happens in the event loop. First, it checks if button A was
pressed and, if it was, uses the radio to send the message “flash”. Then it
reads any messages from the message queue with radio.receive(). If there is
a message it sleeps a short, random period of time (to make the display more
interesting) and uses display.show() to animate a firefly flash. Finally,
to make things a bit exciting, it chooses a random number so that it has a 1 in
10 chance of re-broadcasting the “flash” message to anyone else (this is how
it’s possible to sustain the firefly display among several devices). If it
decides to re-broadcast then it waits for half a second (so the display from
the initial flash message has chance to die down) before sending
the “flash” signal again. Because this code is enclosed within a while True
block, it loops back to the beginning of the event loop and repeats this
process forever.

The end result (using a group of micro:bits) should look something like this:

[image: ../_images/mb-firefly.gif]

Next Steps

These tutorials are only the first steps in using MicroPython with the
BBC micro:bit. A musical analogy: you’ve got a basic understanding of
a very simple instrument and confidently play “Three Blind Mice”.

This is an achievement to build upon.

Ahead of you is an exciting journey to becoming a virtuoso coder.

You will encounter frustration, failure and foolishness. When you do please
remember that you’re not alone. Python has a secret weapon: the most amazing
community of programmers on the planet. Connect with this community and you
will make friends, find mentors, support each other and share resources.

The examples in the tutorials are simple to explain but may not be the simplest
or most efficient implementations. We’ve left out lots of really fun stuff so
we could concentrate on arming you with the basics. If you really want to
know how to make MicroPython fly on the BBC micro:bit then read the API
reference documentation. It contains information about all the capabilities
available to you.

Explore, experiment and be fearless trying things out ~ for these are the
attributes of a virtuoso coder. To encourage you we have hidden a number of
Easter eggs in MicroPython and the code editors (both TouchDevelop and Mu).
They’re fun rewards for looking “under the hood” and “poking with a stick”.

Such skill in Python is valuable: it’s one of the world’s most popular
professional programming languages.

Amaze us with your code! Make things that delight us! Most of all, have fun!

Happy hacking!

TurnipBit 实例教程

本教程的目的是初步学习TurnipBit开发板的例程讲解，
以下例程主要依据板载器件及板载硬件资源进行讲解。
其中主要包括板载LED灯阵，板载按键，加速度传感器，
磁敏传感器，ADC采样以及串口打印等功能。

TurnipBit 基础篇

	TurnipBit是什么

	TurnipBit开发环境介绍

	TurnipBit的快速入门

	TurnipBit向全世界说“hello world”

TurnipBit 入门篇

	TurnipBit的耳机使用

	TurnipBit的LED操作

	TurnipBit开发板按键控制显示图形

	TurnipBit的加速度传感器使用

	TurnipBit的蓝牙使用

	TurnipBit开发板串口接收和打印

	TurnipBit的ADC使用

	TurnipBit完成呼吸灯

TurnipBit 典型实例

	TurnipBit开发板加速度串口打印

	TurnipBit开发板按键控制显示图形

	TurnipBit开发板板载流水灯

	TurnipBit开发板串口打印磁敏值

	TurnipBit开发板串口输出ADC值

	TurnipBit开发板加速度传感器判断开发板倾斜状态

	滚动消息

TurnipBit是什么

1.TurnipBit简介

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于NRF51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

2.TurnipBit板载器件简介

[image: ../../_images/T5.gif]

2.1主控芯片简介

TurnipBit是以NRF51822芯片为主控芯片，主要的数据处理和逻辑运行以及蓝牙通信都是在这款芯片中执行，属于是整个开发板领导班子的班长，一把手。

	NRF51822芯片的主要功能特性如下：

	
	256kB片上闪存和16kB RAM；

	数字和混合信号周边，包括SPI、2-wire、ADC以及正交解码器；

	16 PPI通道；

	撘配片上LDO时电源范围为1.8-3.6V，LDO旁路模式为1.75-1.95V ；

	片上下拉DC/DC转换器用于3V电池（例如，纽扣电池）；

	片上+/- 250 ppm 32kHZ RC振荡器，在蓝牙低功耗应用，不需外部32kHz晶体，可节省成本和电路板空间；

	6x6mm 48脚QFN封装，提供最多可达32个GPIO；

	完整的蓝牙协议堆栈（到配置文件的链接层）。 NRF51822的S110是可下载、免版税、预编译二进制蓝牙低功耗堆栈，可独立编程和更新。

	运行功能如下：

	
	异步和事件驱动SVC的API；

	运行时保护；

	GATT、GAP和L2CAP级别API；

	周边和广播器角色；

	GATT客户端和服务器和2.4GHz RF专用协议的非并行多协议操作；

	少于128kB的代码和6kB的RAM，为应用程序留有超过128kB的闪存和10kB的RAM；

	运行S110堆栈的NRF51822削减了高达50%的功耗。S110堆栈和NRF51822加上NRF518 SDK相互配合，NRF518包含全面的蓝牙低功耗配置文件、服务以及示例应用集合。

TurnipBit与电脑连接仅仅只需要一根安卓数据线，然而主控芯片很忙，没时间做这个连接的工作，所以就连接了一个边载辅助芯片MKL26Z128芯片来完成完成这个功能，可以说MKL26Z128芯片就是主控芯片的小秘书。

	MKL26Z128芯片的工作特性如下：

	
	电压范围： 1.71至3.6 V

	闪存的写入电压范围： 1.71至3.6 V

	温度范围（环境） ： -40? 105℃

	MKL26Z128芯片的功能特性如下：

	
	性能：高达48 MHz的ARM?的Cortex -M0 +内核

	存储器和存储器接口： 128 KB的闪存

	程序存储器-：16 KB RAM

	时钟：32 kHz至40 kHz或3 MHz至32 MHz晶振振荡器，多功能时钟源

	系统外设如下：

	
	九低功耗模式提供动力根据应用需求优化- 4通道DMA控制器

	支持最多63个请求源

	COP软件看门狗

	低漏电唤醒单元

	SWD接口和Micro跟踪缓冲区

	位操作引擎（ BME ）

	安全性和完整性模块如下：

	
	80位的唯一的标识（ID），每码片数KL26P64M48SF5

	人机界面：

	
	低功耗硬件的触摸传感器接口（ TSI ）

	通用输入/输出接口如下：

	模拟量模块- 16位SAR ADC- 12位DAC

	模拟比较器（ CMP）包含6位DAC和可编程参考输入定时器- 六通道定时器/ PWM （ TPM ）- 两个2路定时器/ PWM （ TPM ）- 定期中断定时器- 16位低功耗定时器（ LPTMR ）

	通讯接口- USB全速/低速这去控制器导通芯片收发器和5 V至3.3 V稳压器

	两个16位SPI模块

	两个I2C模块

	一个I2S （ SAI ）模块

	一个低功耗UART模块

	两个UART模块

2.3加速度传感器

TurnipBit上板载了一个加速度传感器，利用加速度传感器可以实时的检测到TurnipBit的倾斜状态，抖动状态，运动状态等。加速度传感器，包括由硅膜片、上盖、下盖，膜片处于上盖、下盖之间，键合在一起；一维或二维纳米材料、金电极和引线分布在膜片上，并采用压焊工艺引出导线；工业现场测振传感器，主要是压电式加速度传感器。其工作原理主要利于压电敏感元件的压电效应得到与振动或者压力成正比的电荷量或者电压量。目前工业现场典型采用IEPE型加速度传感器，及内置IC电路压电加速度传感器，传感器输出与振动量正正比的电压信号，例如：100mV/g?(每个加速度单位输出100mV电压值。1g=9.81m/s-2)。

2.4磁敏传感器

TurnipBit上面板载了一个磁敏传感器，可以感应磁场变化，返回不同的数值，利用这个磁敏传感器可以辨别方向和检测磁场干扰。MAG3110是一款小型的低功耗，数字3轴磁力计。MAG3110数字磁力计是一款测量所处位置磁场（由地磁场和电路板组件产生的磁场加在一起的总和）的三轴向的组成部分。与三轴加速度传感器组合使用时，可以获得不依赖方向的精确罗盘航向信息。MAG3110包括标准的I2C串行接口，能够测量高达10高斯的所在位置的磁场，输出数据速率（ODR）可达到80HZ。相应的输出速率可以从12ms到数秒钟的采样间隔内调整。

2.5板载LED灯阵

TurnipBit上面板载了一个5*5的LED灯阵，可以利用这个LED灯阵显示不同的图形和字符等。发光二极管简称为LED。由含镓(Ga)、砷(As)、磷(P)、氮(N)等的化合物制成。当电子与空穴复合时能辐射出可见光，因而可以用来制成发光二极管。在电路及仪器中作为指示灯，或者组成文字或数字显示。砷化镓二极管发红光，磷化镓二极管发绿光，碳化硅二极管发黄光，氮化镓二极管发蓝光。因化学性质又分有机发光二极管OLED和无机发光二极管LED。

2.6板载耳机接口

TurnipBit上面板载了一个耳机接口，可以利用这个耳机接口接入耳机后，通过TurnipBit输出不同频率的音符，从而连贯音乐等声音信号。

3.TurnipBit接口详解

TurnipBit上面的外接接口为二十八针金手指接插件，除去两个GND，一个VUSB电源，一个VTGT电源，一个3.3V电源，一个BTN蓝牙天线外，全部为外设连接接口引出针脚。

详细针脚图如下：

[image: ../../_images/T4.png]
引出接口数目如下表：

[image: ../../_images/B11.png]
详细接口位置信息详见TurnipBit针脚图，接口使用方法详见例程示例教程文档。

TurnipBit开发环境介绍

TurnipBit支持图形编程和MicroPython编程两种语言编程方式。TurnipBit编程是在TurnipBit的在线编程网站上进行的，这篇文章详细介绍一下TurnipBit在线编程网站的用法。

1.首界面介绍

首页如图。

[image: ../../_images/SY.png]
点开网址http://TurnipBit.tpyboard.com/之后，进入到在线编程网站的首页。两列小火车一直在对着开。

点击快速入门，会跳转到TurnipBit的简要介绍和使用入门的见到教程中。如下图：

[image: ../../_images/SY1.png]
点击“关于我们”可以查看TurnipBit的简要介绍和基本概念，

点击在线商城会跳转到TurnipBit的购买链接。

2.在线编程界面介绍

在首页点击“开始编程”，会打开一个全新的编程网页，此网页默认的是MicroPython语言编程的编程方式，并且在界面的初始部分带了一个MicroPython语言编写的“Hello，World”的例程，如下图。

[image: ../../_images/ZX.png]
这个在线编程的网页同时支持图形编程和MicroPython编程两种语言编程方式。想要使用图形编程的话，点击界面右上角的“编辑器”，即可出现图形编程的界面。

在图形编程界面图形编辑框显示的同时，在图形编辑框的右面还会实时的更新显示MicroPython语言代码。如下图。

[image: ../../_images/TX.png]

3.图形编程界面使用方法

3.1图形编程界面功能区域讲解

再讲解图形编程界面的使用方法前，首先介绍一下图像编程界面的功能区域。

[image: ../../_images/TX1.png]
图形编程功能区域分布如上图。

3.2图形编程界面使用方法

这次的使用方法讲解采用一个利用板载LED显示图案的例子来讲解，方便大家理解。

1.在打开网址http://TurnipBit.tpyboard.com/之后，点击界面右上角的“编辑器”，进入图形编辑界面，如下图

[image: ../../_images/TBJJ1.png]
2.在界面左面的命令选择区域选择需要的命令；

[image: ../../_images/TBJJ2.png]
3.因为我想要LED点阵显示图形，所以要选择一个图形显示的命令，可以看到，在左面的图形编程框中放入新的命令后，在右面的MicroPython代码显示框中，会出现相应的代码语句，如下图：
3.1点击左侧命令选择区域的“显示”；

[image: ../../_images/TBJJ4.png]
3.2在显示中选择箭头所指的图形输出；

[image: ../../_images/TBJJ5.png]
3.3选中图形输出命令；

[image: ../../_images/TBJJ6.png]
4.在加入图形显示命令后，再次选择命令选择区域中的图像框，加入图像编程框中，如下图：

4.1选择左侧命令选择区域的图形；

[image: ../../_images/TBJJ7.png]
4.2选择图形中的图形绘制命令；

[image: ../../_images/TBJJ8.png]
4.3选中图形绘制命令；

[image: ../../_images/TBJJ9.png]
5.在图形绘制命令中可以选择设置相对应的LED灯的亮度，如下图：

[image: ../../_images/TBJJ10.png]
6.绘制完成你想要的图案后，点击左下角的下载hex，即可得到想要的固件；

7.在TurnipBit插上电脑后，出现一个盘符，打开盘符，把刚刚下载的固件复制进去，在复制固件进去的时候，板载的黄色指示灯会闪烁，同时在电脑界面会出现如下界面：

[image: ../../_images/TBJJ11.png]
8.当固件复制完成后，TurnipBit会自动执行新的程序。

TurnipBit的快速入门

我们是一群极客爱好者，我们的目标是让您与我们一起通过代码，通过最简单的硬件拼接，与世界分享各种丰富有趣的创意。TurnipBit就像是一个基本的主板，不管您是水平极高的硬件达人，还是什么都不会的初学爱好者，您都能在极短的时间，甚至是几分钟内编写出第一个“hello world”，制作出第一个闪烁的LED灯。

您可以用TurnipBit作什么？您可以像玩“乐高”积木一样学习，您还可以利用TurnipBit实现任何酷炫的小发明，无论是机器人还是乐器，没有想不到。TurnipBit拥有25个可显示消息的蓝色LED灯；有两个可编程按钮，可以用于控制游戏操作或者暂停/播放一首音乐。TurnipBit可以检测动作并且告知你动作进行的方向，同时它也可以通过低功耗蓝牙模块与其它设备或因特网互联！

我们为您提供了高品质的数据线及TurnipBit主板。您还可以选配各种TurnipBit适用的扩展连接件。我们提供了调试功能，所以你可以真正的询问系统，更多的了解你的TurnipBit，灵活的搭配，创造属于你的设备。

现在你可以登陆网页（http://TurnipBit.tpyboard.com/），编写你自己的脚本创造属于你自己的创意了。任何人都可以通过简单的拖动，尝试自己写一段代码，然后将存储u盘文件一样简单的实现硬件烧写，您就会惊奇的发现，TurnipBit正在按照您的创意开始工作了。

您还在等什么呢？让我们现在就开始吧！

一、TurnipBit与电脑连接

将TurnipBit插入电脑后，您的电脑上会显示一个TurnipBit的盘符，在这个盘符里会有microbit的介绍，如果您没有充足的时间完全可以忽略这些文件。此时，TurnipBit的25个led灯会显示hello TurnipBit字样。

[image: ../../_images/RM.png]
[image: ../../_images/RM1.png]

二、开始我们的第一个程序

1.在打开网址http://TurnipBit.tpyboard.com/之后，点击界面右上角的“编辑器”，进入图形编辑界面，如下图

[image: ../../_images/TBJJ1.png]
2.在界面左面的命令选择区域选择需要的命令；

[image: ../../_images/TBJJ2.png]
3.因为我想要LED点阵显示图形，所以要选择一个图形显示的命令，可以看到，在左面的图形编程框中放入新的命令后，在右面的MicroPython代码显示框中，会出现相应的代码语句，如下图：
3.1点击左侧命令选择区域的“显示”；

[image: ../../_images/TBJJ4.png]
3.2在显示中选择箭头所指的图形输出；

[image: ../../_images/TBJJ5.png]
3.3选中图形输出命令；

[image: ../../_images/TBJJ6.png]
4.在加入图形显示命令后，再次选择命令选择区域中的图像框，加入图像编程框中，如下图：

4.1选择左侧命令选择区域的图形；

[image: ../../_images/TBJJ7.png]
4.2选择图形中的图形绘制命令；

[image: ../../_images/TBJJ8.png]
4.3选中图形绘制命令；

[image: ../../_images/TBJJ9.png]
5.在图形绘制命令中可以选择设置相对应的LED灯的亮度，如下图：

[image: ../../_images/TBJJ10.png]
6.绘制完成你想要的图案后，点击左下角的下载hex，即可得到想要的固件；

7.在TurnipBit插上电脑后，出现一个盘符，打开盘符，把刚刚下载的固件复制进去，在复制固件进去的时候，板载的黄色指示灯会闪烁，同时在电脑界面会出现如下界面：

[image: ../../_images/TBJJ11.png]
8.当固件复制完成后，TurnipBit会自动执行新的程序。

三、观察效果

您会看到25个LED灯有序的闪动，显示hello！
好了，至此，您的第一个程序以及第一个极客创意就算完成了，余下的就是发挥您想像的时刻了。快来通过代码编写与世界分享你的创意，TurnipBit将是你与世界万物互联的中心。我们正在努力令到你的代码编写经验更加流畅及有趣，我们非常乐于听到你的任何反馈。你可以直接邮件联系我们：***.

TurnipBit向全世界说“hello world”

一、什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

二、利用TurnipBit向全世界说“hello world”

1、具体要求

利用TurnipBit开发板板载的5*5LED点阵完成循环显示字符“hello world”。

2、所需器件

TurnipBit开发板 一块

5*5LED点阵为板载器件

3、LED介绍

发光二极管简称为LED。由含镓(Ga)、砷(As)、磷(P)、氮(N)等的化合物制成。当电子与空穴复合时能辐射出可见光，因而可以用来制成发光二极管。在电路及仪器中作为指示灯，或者组成文字或数字显示。砷化镓二极管发红光，磷化镓二极管发绿光，碳化硅二极管发黄光，氮化镓二极管发蓝光。因化学性质又分有机发光二极管OLED和无机发光二极管LED。

[image: ../../_images/LED18.png]

三、制作主要过程

先上个图，下面再开始说代码的问题。

[image: ../../_images/L2.jpg]

1、制作流程

1.在打开网址http://TurnipBit.tpyboard.com/之后，点击界面右上角的“编辑器”，进入图形编辑界面，如下图

[image: ../../_images/TBJJ1.png]
;

2.在界面左面的命令选择区域选择需要的命令；

[image: ../../_images/TBJJ2.png]
3.因为想要LED点阵显示字符串，所以要选择一个字符串显示的命令，可以看到，在左面的图形编程框中放入新的命令后，在右面的MicroPython代码显示框中，会出现相应的代码语句，如下图：

3.1点击左侧命令选择区域的“显示”；

[image: ../../_images/TBJJ4.png]
3.2在显示中选择箭头所指的字符串输出命令；

[image: ../../_images/LED2.png]
3.3选中字符串输出命令；

[image: ../../_images/LED3.png]
4.因为要循环显示，所以要加入一个循环，如下图：
4.1点击命令选择区域的“循环”；

[image: ../../_images/LED5.png]
4.2把循环命令加入图形编辑框；

[image: ../../_images/LED6.png]
4.3循环需要一个循环条件，这里把循环条件设置成无线循环，点击命令选着区域的“逻辑”；

[image: ../../_images/LED7.png]
4.4选择“ture”；

[image: ../../_images/LED8.png]
4.5把循环条件放入到循环命令的判断接口；

[image: ../../_images/LED9.png]
4.6把要循环执行的任务放到循环命令的执接口中；

[image: ../../_images/LED10.png]
5.绘制完成你想要的图案后，点击左下角的下载hex，即可得到想要的固件；

6.在TurnipBit插上电脑后，出现一个盘符，打开盘符，把刚刚下载的固件复制进去，在复制固件进去的时候，板载的黄色指示灯会闪烁，同时在电脑界面会出现如下界面：

[image: ../../_images/TBJJ11.png]
7.当固件复制完成后，TurnipBit会自动执行新的程序。

TurnipBit的耳机使用

1.什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

2.利用turnipbbit 的耳机听音乐

2.1具体要求

利用TurnipBit开发板板载的耳机接口听音乐。

2.2所需器件

	TurnipBit开发板 一块

	耳机 一个

	耳机接口为板载器件

1、耳机介绍

耳机是一对转换单元，它接受媒体播放器或接收器所发出的电讯号，利用贴近耳朵的扬声器将其转化成可以听到的音波。耳机一般是与媒体播放器可分离的，利用一个插头连接。好处是在不影响旁人的情况下，可独自聆听音响；亦可隔开周围环境的声响，对在录音室、DJ、旅途、运动等在噪吵环境下使用的人很有帮助。耳机原是给电话和无线电上使用的，但随着可携式电子装置的盛行，耳机多用于手机、随身听、收音机。可携式电玩和数位音讯播放器等。

3.制作主要过程

3.1制作流程

1.在打开网址http://TurnipBit.tpyboard.com/之后，点击界面右上角的“编辑器”，进入图形编辑界面，如下图

[image: ../../_images/TBJJ1.png]
;

2.在界面左面的命令选择区域选择需要的命令；

[image: ../../_images/TBJJ2.png]
；

3.在命令选择区域选择音乐，如图：

[image: ../../_images/EJ1.png]
4.在音乐命令里面选择“play”这个选项，如图：

[image: ../../_images/EJ2.png]
5.把这个音乐的命令加入到图形编程框中，如图：

[image: ../../_images/EJ3.png]
6.绘制完成你想要的图案后，点击左下角的下载hex，即可得到想要的固件；

7.在TurnipBit插上电脑后，出现一个盘符，打开盘符，把刚刚下载的固件复制进去，在复制固件进去的时候，板载的黄色指示灯会闪烁，同时在电脑界面会出现如下界面：

[image: ../../_images/TBJJ11.png]
8.固件复制完成后，TurnipBit会自动执行新的程序。

TurnipBit的LED操作

1.什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

2.利用TurnipBit开发板完成流水显示图形

2.1具体要求

利用TurnipBit开发板板载的5*5LED点阵学习led的操作，包括显示图形、文字、流水等等。

因为之前已经做过了图形显示和字符串显示的讲解，这篇文章就主要来讲解一下流水灯的做法。

2.2所需器件

	TurnipBit开发板 一块

	5*5LED点阵为板载器件

1、LED介绍

发光二极管简称为LED。由含镓(Ga)、砷(As)、磷(P)、氮(N)等的化合物制成。当电子与空穴复合时能辐射出可见光，因而可以用来制成发光二极管。在电路及仪器中作为指示灯，或者组成文字或数字显示。砷化镓二极管发红光，磷化镓二极管发绿光，碳化硅二极管发黄光，氮化镓二极管发蓝光。因化学性质又分有机发光二极管OLED和无机发光二极管LED。

2、流水灯简介

就是一组灯，然后在控制系统的控制下按照设定的顺序和时间来发亮和熄灭，这样就能形成一定的视觉效果，很多街上的店面和招牌上面就安了流水灯，看上去更美观。

3.制作主要过程

先上个图，下面再开始说代码的问题。

[image: ../../_images/L2.jpg]
实物图片

[image: ../../_images/L3.png]
代码截图

再放上一个视频链接：
https://v.qq.com/x/page/e0509rnqn5r.html

3.1制作流程

1.首先需要定义要用到的变量，这次用到了三个变量：“X”控制led的X轴坐标，“Y”控制led的Y轴坐标，“b”控制是点亮led还是熄灭led；

2.设置一个死循环；

3.判断b是否等于1；

4.如果b等于1，熄灭坐标为（X,Y）的led；

5.判断b是否等于-1；

6.如果b等于-1，点亮坐标为（X,Y）的led；

7.变量Y加一；

8.判断变量Y是否等于5；

9.如果变量Y等于5，将变量Y置零，将变量X加一，判断变量X是否等于5；

10.如果变量X等于5，将变量b乘负一，将变量X置零；

11.延时100毫秒，并执行无限循环。

3.2命令选择区域命令简介

3.3具体代码

图形代码：

[image: ../../_images/L1.png]
Python代码:

from microbit import *#声明类库

x = 0#定义变量X，控制led的X轴

y = 0#控制变量Y，控制led的Y轴

b = -1#控制变量b，控制点亮和熄灭

while True:#设置死循环

if b == 1:#判断b是否等于1

display.set_pixel(x, y, 0)#将坐标为(X,Y)的led熄灭

if b == -1:#判断b是否等于-1

display.set_pixel(x, y, 9)#将坐标为(X,Y)的led点亮

y = y + 1#将变量Y加一

if y == 5:#判断变量Y是否等于5

y = 0#将变量Y置零

x = x + 1#将变量X加一

if x == 5:#判断变量X是否等于5

b = b * -1#将变量b乘-1

x = 0#将变量X置零

sleep(100)#延时100毫秒

TurnipBit开发板按键控制显示图形

一、什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

二、利用TurnipBit开发板完成按键控制显示图形

1、具体要求

利用TurnipBit开发板完成按键控制板载LED灯显示不同的图形。

利用板载LED显示不同图案，反应不同的按键状态。按键A按下时，显示“Y”，按键B按下时，显示“+”。按键A ,B都没有按下的时候，显示“*”。

2、所需器件

	TurnipBit开发板 一块

	按键为板载器件

3、按键介绍

按键开关主要是指轻触式按键开关，也称之为轻触开关。按键开关是一种电子开关，属于电子元器件类，最早出现在日本称之为：敏感型开关，使用时以满足操作力的条件向开关操作方向施压开关功能闭合接通，当撤销压力时开关即断开，其内部结构是靠金属弹片受力变化来实现通断的。
按键开关有接触电阻荷小、精确的操作力误差、规格多样化等方面的优势，在电子设备及白色家电等方面得到广泛的应用如：影音产品、数码产品、遥控器、通讯产品、家用电器、安防产品、玩具、电脑产品、健身器材、医疗器材、验钞笔、雷射笔按键等等。因为按键开关对环境的条件（施压力小于2倍的弹力/环境温湿度条件以及电气性能）大型设备及高负荷的按钮都使用导电橡胶或锅仔开关五金弹片直接来代替，比如医疗器材、电视机遥控器等。

三、制作主要过程

先上个图，下面再开始说代码的问题。

[image: ../../_images/T2.png]
[image: ../../_images/T3.png]
[image: ../../_images/T8.png]

1、制作流程

1.在打开网址http://TurnipBit.tpyboard.com/之后，点击界面右上角的“编辑器”，进入图形编辑界面，如下图

[image: ../../_images/TBJJ1.png]
;

2.在界面左面的命令选择区域选择需要的命令；

[image: ../../_images/TBJJ2.png]
3.因为想要LED点阵显示字符串，所以要选择一个字符串显示的命令，可以看到，在左面的图形编程框中放入新的命令后，在右面的MicroPython代码显示框中，会出现相应的代码语句，如下图：

3.1点击左侧命令选择区域的“显示”；

[image: ../../_images/TBJJ4.png]
3.2在显示中选择箭头所指的字符串输出命令；

[image: ../../_images/TBJJ4.png]
3.3选中字符串输出命令，并在在命令中修改相应的字符；

[image: ../../_images/LE4.png]
4.因为要让程序一直循环执行来扫面按键状态，所以要加入一个循环，如下图：

4.1点击命令选择区域的“循环”；

[image: ../../_images/LED5.png]
4.2把循环命令加入图形编辑框；

[image: ../../_images/LED6.png]
4.3循环需要一个循环条件，这里把循环条件设置成无线循环，点击命令选着区域的“逻辑”；

[image: ../../_images/LED7.png]
4.4选着“ture”；

[image: ../../_images/LED8.png]
4.5把循环条件放入到循环命令的判断接口；

[image: ../../_images/LED9.png]
4.6把要循环执行的任务放到循环命令的执接口中；

[image: ../../_images/LED10.png]
5.要做按键的控制，必须要加入按键如下图；

5.1点击命令选择区域的“按键”；

[image: ../../_images/LE2.png]
5.2选择“按键A被按下”；

[image: ../../_images/LE3.png]
5.3加入两个按键状态扫描命令到图形编辑框中，并设置为那件A，B状态扫描；

[image: ../../_images/LE5.png]
6.上面工作完成后，剩下的就是要做判断了，一直循环着判断A和B有没有按下，如图：

6.1点击命令选择区域“逻辑”；

[image: ../../_images/LE6.png]
6.2点击选择“IF...DO”的命令；

[image: ../../_images/LE7.png]
6.3把“IF...DO”的命令命令加入到图形编程框中，并组成相应逻辑；

[image: ../../_images/LE8.png]

	编辑好你想要的图形逻辑代码后，点击左下角的下载hex，即可得到想要的固件；

8.在TurnipBit插上电脑后，出现一个盘符，打开盘符，把刚刚下载的固件复制进去，在复制固件进去的时候，板载的黄色指示灯会闪烁，同时在电脑界面会出现如下界面：

[image: ../../_images/TBJJ11.png]
9.当固件复制完成后，TurnipBit会自动执行新的程序。

TurnipBit的加速度传感器使用

1.什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

2.利用TurnipBit开发板完成倾斜状态LED显示

2.1具体要求

利用TurnipBit开发板完成加速度传感器判断开发板的倾斜状态，判断加速度的Y轴倾斜值，向左偏移板载LED显示“1”，向右偏移显 示“0”，处于平衡位置，显示“-”。

2.2所需器件

	TurnipBit开发板 一块

	5*5LED点阵为板载器件

	加速度传感器为板载器件

1、LED介绍

发光二极管简称为LED。由含镓(Ga)、砷(As)、磷(P)、氮(N)等的化合物制成。当电子与空穴复合时能辐射出可见光，因而可以用来制成发光二极管。在电路及仪器中作为指示灯，或者组成文字或数字显示。砷化镓二极管发红光，磷化镓二极管发绿光，碳化硅二极管发黄光，氮化镓二极管发蓝光。因化学性质又分有机发光二极管OLED和无机发光二极管LED。

[image: ../../_images/LED18.png]

2、加速度传感器简介

加速度传感器，包括由硅膜片、上盖、下盖，膜片处于上盖、下盖之间，键合在一起；一维或二维纳米材料、金电极和引线分布在膜片上，并采用压焊工艺引出导线；工业现场测振传感器，主要是压电式加速度传感器。其工作原理主要利于压电敏感元件的压电效应得到与振动或者压力成正比的电荷量或者电压量。目前工业现场典型采用IEPE型加速度传感器，及内置IC电路压电加速度传感器，传感器输出与振动量正正比的电压信号，例如：100mV/g?(每个加速度单位输出100mV电压值。1g=9.81m/s-2)。

三、制作主要过程

先上个图，下面再开始说代码的问题。

[image: ../../_images/11.jpg]
图一

[image: ../../_images/12.jpg]
图二

[image: ../../_images/13.jpg]
图三

1、制作流程

1.在打开网址http://TurnipBit.tpyboard.com/之后，点击界面右上角的“编辑器”，进入图形编辑界面，如下图

[image: ../../_images/TBJJ1.png]
;

2.在界面左面的命令选择区域选择需要的命令；

[image: ../../_images/TBJJ2.png]
3.因为想要LED点阵显示字符串，所以要选择一个字符串显示的命令，可以看到，在左面的图形编程框中放入新的命令后，在右面的MicroPython代码显示框中，会出现相应的代码语句，如下图：

3.1点击左侧命令选择区域的“显示”；

[image: ../../_images/TBJJ4.png]
3.2在显示中选择箭头所指的字符串输出命令；

[image: ../../_images/LED2.png]
3.3选中字符串输出命令，并在在命令中修改相应的字符；

[image: ../../_images/JS1.png]
4.因为要让程序一直循环执行来扫面加速度传感器状态，所以要加入一个循环，如下图：

4.1点击命令选择区域的“循环”；

[image: ../../_images/JS15.png]
4.2把循环命令加入图形编辑框；

[image: ../../_images/JS2.png]
4.3循环需要一个循环条件，这里把循环条件设置成无线循环，点击命令选着区域的“逻辑”；

[image: ../../_images/JS3.png]
4.4选着“ture”；

[image: ../../_images/JS4.png]
4.5把循环条件放入到循环命令的判断接口；

[image: ../../_images/JS5.png]
5.要做到根据加速度传感器控制，必须要加入加速度传感器值的读取，如下图；

5.1点击命令选择区域的“加速度传感器”；

[image: ../../_images/JS6.png]
5.2选择“加速度传感器X轴”；

[image: ../../_images/JS7.png]
5.3把“加速度传感器X轴”加入到图形编辑框；

[image: ../../_images/JS8.png]
6.上面工作完成后，剩下的就是要做判断了，一直循环着判断加速度传感器X轴的值是一个什么范围，如图：

6.1点击命令选择区域“逻辑”；

[image: ../../_images/JS9.png]
6.2点击选择“IF...DO”的命令；

[image: ../../_images/JS10.png]
6.3把“IF...DO”的命令命令加入到图形编程框中，并组成相应逻辑；

[image: ../../_images/JS11.png]
6.4这里还需要加入逻辑判断的条件，在“逻辑”中选择逻辑条件命令；

[image: ../../_images/JS12.png]
6.5因为要判断加速度传感器数值的大小对比，所以要加入数字选项；

[image: ../../_images/JS12.png]
6.5在图形编辑框中加入逻辑条件命令和数字选项，并组成相应逻辑；

[image: ../../_images/JS13.png]

	编辑好你想要的图形逻辑代码后，点击左下角的下载hex，即可得到想要的固件；

8.在TurnipBit插上电脑后，出现一个盘符，打开盘符，把刚刚下载的固件复制进去，在复制固件进去的时候，板载的黄色指示灯会闪烁，同时在电脑界面会出现如下界面：

[image: ../../_images/TBJJ11.png]
9.当固件复制完成后，TurnipBit会自动执行新的程序。

TurnipBit的蓝牙使用

1.什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

2.详细讲解TurnipBit的蓝牙使用

2.1具体要求

TurnipBit的板载蓝牙是TurnipBit进行无线程序烧写的基本，利用板载蓝牙连接手机和TurnipBit。

2.2所需器件

	TurnipBit开发板 一块

	蓝牙为板载器件

1、蓝牙介绍

所谓蓝牙技术，实际上是一种短距离无线通信技术，利用“蓝牙”技术，能够有效地简化掌上电脑、笔记本电脑和移动电话手机等移动通信终端设备之间的通信，也能够成功地简化以上这些设备与Internet之间的通信，从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效，为无线通信拓宽道路。说得通俗一点，就是蓝牙技术使得现代一些轻易携带的移动通信设备和电脑设备，不必借助电缆就能联网，并且能够实现无线上因特网。

3.TurnipBit利用蓝牙连接手机详细教程

1.首先在手机上下载TurnipBit所应用的APP，下载连接如下：

这里以后加上下载连接。；

2.在下载APP完成后，在手机上安装APP，手机系统版本必须在Android5.0以上带有蓝牙的手机才能安装（据说需要android6的才能正常下载）；

3.安装好APP后，打开APP,界面如图：

[image: ../../_images/LAN6.jpg]
4.点击“Connect”，界面如图，图中如果是连接过TurnipBit的，会保留上次连接设备名称，如果要是没有连接过TurnipBit的，这个红框里会显示“-”：

[image: ../../_images/LAN5.jpg]
5.点击上图中的黄色和按钮，开始TurnipBit的搜索连接，如图：

[image: ../../_images/LAN4.jpg]
；

6.按下“NEXT”，出现蓝牙配对界面，如下图：

[image: ../../_images/LAN2.jpg]
7.此时，在给TurnipBit供电的前提下，在同时按住按键A和按键B的前提下，按下“REST”按键两秒左右，松开；

8.这时TurnipBit的LED上滚动字符串“pairing”和“mode1”，完成滚动后，LED界面会出现一个图案，这个图案是蓝牙配对的密码，如果要是TurnipBit的LED一直不出现上述现象，可以往板子里面随便烧写一个固件进去再试一下，如图：

[image: ../../_images/LAN.png]
9.此时在手机APP上，进行密码图案绘制，绘制成功后，右下角会出现一个“NEXT”如图：

[image: ../../_images/LAN3.jpg]
10.点击“NEXT”，手机和TurnipBit开始配对，配对成功会出现如图界面：

[image: ../../_images/LAN.jpg]
11.剩下的就是点解“OK”;

此时TurnipBit和手机就已经配对连接完成。

TurnipBit开发板串口接收和打印

一、什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

二、利用TurnipBit开发板完成串口接收和打印

1、具体要求

利用TurnipBit开发板完成串口接收和打印

利用串口助手工具，从电脑往开发板发送数据，在开发板收到数据后，把数据发送回来。

2、所需器件

	TurnipBit开发板 一块

3、串口介绍

串行接口

 TurnipBit的ADC使用

TurnipBit的ADC使用

一、什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

二、利用TurnipBit开发板完成串口输出ADC的值

1、具体要求

利用TurnipBit开发板完成GPIO口模拟值采集，并通过串口输出，通过借助串口助手显示当前返回开发板的P0接口的模拟值。

2、所需器件

	TurnipBit开发板 一块

	杜邦线 一根

3、串口介绍

串行接口

 TurnipBit完成呼吸灯

TurnipBit完成呼吸灯

一、什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。
确保广大爱好者零基础学习单片机。

二、利用TurnipBit完成呼吸灯阵的制作

1、具体要求

利用TurnipBit开发板完成板载的5*5 LED灯阵呼吸显示，做一个呼吸灯阵。

2、所需器件

TurnipBit开发板 一块

板载LED 一根

3、PWM介绍

脉冲宽度调制(PWM)，是英文“Pulse Width Modulation”的缩写，简称脉宽调制，是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术，广泛应用在从测量、通信到功率控制与变换的许多领域中。
航模中的控制信号大多是PWM信号，比如FUTABA,JR等舵机的控制都采用PWM方式。
发射机给接收机一串脉冲，比如基础脉宽是100ms，那么发射机的脉宽变大时，比如增大为150ms，那么接收机就控制舵机正向旋转，发射的脉宽减小时，比如减小为50ms，那么接收机就控制舵机逆向旋转。

三、制作主要过程

先上个图，下面再开始说代码的问题。

[image: ../../_images/PWM1.jpg]
附上一个视频效果链接：
https://v.qq.com/x/page/h0513jdzcsz.html

1、制作流程

图形代码：

[image: ../../_images/PWM1.png]
[image: ../../_images/PWM2.png]

 TurnipBit开发板加速度串口打印

TurnipBit开发板加速度串口打印

一、什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

二、利用TurnipBit开发板完成加速度值的获取与打印

1、具体要求

利用TurnipBit开发板完成加速度值的串口输出，通过借助串口助手，接收由开发板返回的当前开发板的加速度的值。

2、所需器件

	TurnipBit开发板 一块

	加速度传感器为板载器件

3、串口介绍

串行接口

 TurnipBit开发板按键控制显示图形

TurnipBit开发板按键控制显示图形

一、什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

二、利用TurnipBit开发板完成按键控制显示图形

1、具体要求

利用TurnipBit开发板完成按键控制板载LED灯显示不同的图形。按键A按下时，显示“Y”，按键B按下时，显示“+”。按键A ,B都没有按下的时候，显示“*”.

2、所需器件

	TurnipBit开发板开发板 一块

	按键为板载器件

3、串口介绍

按键开关主要是指轻触式按键开关，也称之为轻触开关。按键开关是一种电子开关，属于电子元器件类，最早出现在日本称之为：敏感型开关，使用时以满足操作力的条件向开关操作方向施压开关功能闭合接通，当撤销压力时开关即断开，其内部结构是靠金属弹片受力变化来实现通断的。
按键开关有接触电阻荷小、精确的操作力误差、规格多样化等方面的优势，在电子设备及白色家电等方面得到广泛的应用如：影音产品、数码产品、遥控器、通讯产品、家用电器、安防产品、玩具、电脑产品、健身器材、医疗器材、验钞笔、雷射笔按键等等。因为按键开关对环境的条件（施压力小于2倍的弹力/环境温湿度条件以及电气性能）大型设备及高负荷的按钮都使用导电橡胶或锅仔开关五金弹片直接来代替，比如医疗器材、电视机遥控器等。

三、制作主要过程

先上个图，下面再开始说代码的问题。

[image: ../../_images/T8.png]
[image: ../../_images/T2.png]
[image: ../../_images/T3.png]

1、制作流程

1.首先需要声明类库；

2.定义需要用到的变量（这里没有用到变量，不用定义）；

3.开始主函数的编写，第一步判断按键A是否按下；

4.如果按键A按下，则显示“+”；

5.判断按键B是否按下；

6.如果按键B按下，则显示“Y”；

7.如果按键A,B都没有按下，则显示“*”；

8.完成以上代码编写后，就完成了整个程序的逻辑编写，开始无限循环，不断的扫描按键状态。

2、具体代码

Python代码:

from microbit import *#声明变量

while True:

if button_a.is_pressed():#判断按键A是否按下

display.show(“+”)#显示图形“+”

elif button_b.is_pressed():#判断按键B是否按下

display.show(“Y”)#显示图形“Y”

else:

display.show(“*”)#显示图形“*”

 TurnipBit开发板板载流水灯

TurnipBit开发板板载流水灯

一、什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

二、利用TurnipBit开发板完成板载流水灯

1、具体要求

利用TurnipBit开发板完成按键控制板载LED灯进行流水显示，首先逐个led点亮，等到所有的led点亮后，逐个led熄灭。

2、所需器件

	TurnipBit开发板 一块

	led为板载器件

3、LED介绍

发光二极管简称为LED。由含镓(Ga)、砷(As)、磷(P)、氮(N)等的化合物制成。当电子与空穴复合时能辐射出可见光，因而可以用来制成发光二极管。在电路及仪器中作为指示灯，或者组成文字或数字显示。砷化镓二极管发红光，磷化镓二极管发绿光，碳化硅二极管发黄光，氮化镓二极管发蓝光。因化学性质又分有机发光二极管OLED和无机发光二极管LED。

4、流水灯简介

就是一组灯，然后在控制系统的控制下按照设定的顺序和时间来发亮和熄灭，这样就能形成一定的视觉效果，很多街上的店面和招牌上面就安了流水灯，看上去更美观。

三、制作主要过程

先上个图，下面再开始说代码的问题。

[image: ../../_images/PWM1.jpg]
实物图片

[image: ../../_images/BJLQ.png]
代码截图
再放上一个视频链接：
https://v.qq.com/x/page/e0509rnqn5r.html

1、制作流程

1.首先需要定义要用到的变量，这次用到了三个变量：“X”控制led的X轴坐标，“Y”控制led的Y轴坐标，“b”控制是点亮led还是熄灭led；

2.设置一个死循环；

3.判断b是否等于1；

4.如果b等于1，熄灭坐标为（X,Y）的led；

5.判断b是否等于-1；

6.如果b等于-1，点亮坐标为（X,Y）的led；

7.变量Y加一；

8.判断变量Y是否等于5；

9.如果变量Y等于5，将变量Y置零，将变量X加一，判断变量X是否等于5；

10.如果变量X等于5，将变量b乘负一，将变量X置零；

11.延时100毫秒，并执行无限循环。

2、具体代码：

图形代码：

[image: ../../_images/BJL.png]
Python代码:

from microbit import *#声明类库

x = 0#定义变量X，控制led的X轴

y = 0#控制变量Y，控制led的Y轴

b = -1#控制变量b，控制点亮和熄灭

while True:#设置死循环

if b == 1:#判断b是否等于1

display.set_pixel(x, y, 0)#将坐标为(X,Y)的led熄灭

if b == -1:#判断b是否等于-1

display.set_pixel(x, y, 9)#将坐标为(X,Y)的led点亮

y = y + 1#将变量Y加1

if y == 5:#判断变量Y是否等于5

y = 0#将变量Y置零

x = x + 1#将变量X加1
if x == 5:#判断变量X是否等于5

b = b * -1#将变量b乘-1

x = 0#将变量X置零

sleep(100)#延时100毫秒

 TurnipBit开发板串口打印磁敏值

TurnipBit开发板串口打印磁敏值

一、什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

二、利用TurnipBit开发板完成串口打印磁敏传感器的值

1、具体要求

利用TurnipBit开发板完成串口打印磁敏传感器的值。

2、所需器件

	TurnipBit开发板 一块

	磁敏传感器为板载器件

3、磁敏传感器介绍

MAG3110是一款小型的低功耗，数字3轴磁力计。MAG3110数字磁力计是一款测量所处位置磁场（由地磁场和电路板组件产生的磁场加在一起的总和）的三轴向的组成部分。与三轴加速度传感器组合使用时，可以获得不依赖方向的精确罗盘航向信息。MAG3110包括标准的I2C串行接口，能够测量高达10高斯的所在位置的磁场，输出数据速率（ODR）可达到80HZ。相应的输出速率可以从12ms到数秒钟的采样间隔内调整。

4、串口介绍

串行接口

 TurnipBit开发板串口输出ADC值

TurnipBit开发板串口输出ADC值

一、什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

二、利用TurnipBit开发板完成串口输出ADC的值

1、具体要求

利用TurnipBit开发板完成GPIO口模拟值采集，并通过串口输出，通过借助串口助手，往开发板发送“1”，开发板接到后返回当前开发板的P0接口的模拟值。

2、所需器件

	TurnipBit开发板 一块

	杜邦线 一根

3、串口介绍

串行接口

 TurnipBit开发板加速度传感器判断开发板倾斜状态

TurnipBit开发板加速度传感器判断开发板倾斜状态

一、什么是TurnipBit开发板

TurnipBit开发板由TurnipSmart公司制作的一款MicroPython开发板，基于nrf51822芯片为主控芯片，以MKL26Z128VFM4芯片作为边载辅助芯片，板载5*5LED灯，板载加速度传感器，板载磁敏传感器灯多种外设器件，同时支持图形编程及MicroPython代码编程控制的高智能芯片开发板。

确保广大爱好者零基础学习单片机。

二、利用TurnipBit开发板完成加速度传感器判断开发板的倾斜状态

1、具体要求

利用TurnipBit开发板完成加速度传感器判断开发板的倾斜状态，判断加速度的Y轴倾斜值，向左偏移板载LED显示“1”，向右偏移显示“0”，处于平衡位置，显示“-”。

2、所需器件

	TurnipBit开发板 一块

	加速度传感器为板载器件

3、加速度传感器介绍

加速度传感器，包括由硅膜片、上盖、下盖，膜片处于上盖、下盖之间，键合在一起；一维或二维纳米材料、金电极和引线分布在膜片上，并采用压焊工艺引出导线；工业现场测振传感器，主要是压电式加速度传感器。其工作原理主要利于压电敏感元件的压电效应得到与振动或者压力成正比的电荷量或者电压量。目前工业现场典型采用IEPE型加速度传感器，及内置IC电路压电加速度传感器，传感器输出与振动量正正比的电压信号，例如：100mV/g

 滚动消息

滚动消息

滚动消息命令简介

[image: ../../_images/DUNDONNG2.png]
TurnipBit上面自带一个由高亮LED组成的显示屏，且TurnipBit中有专用的字符显示功能，可以随心所欲的显示想显示的英文字符。

滚动消息命令使用方法

[image: ../../_images/DUNDONNG.gif]

滚动的名牌

做一个小程序，在TurnipBit自带的显示屏上滚动显示自己名字的拼音。

示例代码截图

[image: ../../_images/xxy.png]

示例代码编辑过程

[image: ../../_images/xxy.gif]

小试牛刀

学习了上面的知识，是不是手痒想试试身手？猛戳 小试牛刀 [http://turnipbit.tpyboard.com/].

 TurnipBit 拼插控件教程

TurnipBit 拼插控件教程

本教程的目的是初步学习TurnipBit开发板的拖拽控件
的使用和基本例程讲解，

TurnipBit 基础篇

	显示块

	按键块

	图形块

	TurnipBit块

	加速度传感器块

	磁敏传感器块

	音乐块

 显示块

显示块

本教程的目的是初步学习TurnipBit开发板的拖拽控件
的使用和基本例程讲解，

TurnipBit 显示块

	获取指定LED亮度

	设置指定LED亮度

	滚动消息

	显示图像

	显示图像（带参数）

	打开屏幕

	关闭屏幕

	显示是否打开

	清除显示内容

 获取指定LED亮度

获取指定LED亮度

获取指定LED亮度

获取指定LED亮度说明

[获取指定LED亮度插]的图例

[image: ../../../_images/display.get_pixel.png]
功能：获取指定位置的LED的当前亮度。

	参数：

	
	第一个参数为指定LED的X轴坐标，取值范围为0-4。

	第二个参数为指定LED的Y轴坐标，取值范围为0-4。

[获取指定LED亮度拼]的动画

[image: ../../../_images/display.get_pixel.gif]

 设置指定LED亮度

设置指定LED亮度

设置指定LED亮度的说明

[设置指定LED亮度拼]的图例

[image: ../../../_images/display.set_pixel.png]
功能：设置指定位置的LED灯的亮度。

	参数：

	
	第一个参数为指定LED的X轴坐标，取值范围为0-4。

	第二个参数为指定LED的Y轴坐标，取值范围为0-4。

	第三个参数为设定LED的亮度值，取值范围为0-9。

[设置指定LED亮度拼]的动画

[image: ../../../_images/display.set_pixel.gif]

设置指定LED亮度的例程

忽闪忽闪小蓝灯

动手DIY一个忽闪忽闪的小灯。

拼插源码

[image: ../../../_images/display.set_pixelh.png]
实例源码:

from microbit import *

while True:
 display.set_pixel(0, 0, 9)
 sleep(500)
 display.set_pixel(0, 0, 0)
 sleep(500)

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 display.set_pixel HEX [http://turnipbit.com/download.php?fn=display.set_pixel.hex]

 滚动消息

滚动消息

滚动消息说明

[滚动消息拼]的图例

[image: ../../../_images/display.scroll.ex00.png]
使用[滚动消息拼]在TurnipBit显示屏上滚动显示的英文。

[滚动消息拼]的动画

[image: ../../../_images/display.scroll.gif]
查看原图 [http://docs.turnipbit.com/zh/latest/_images/display.scroll.gif]

滚动消息例程

电子名牌

动手做一个挂在胸前的电子名牌。

拼插源码

[image: ../../../_images/display.scroll.ex01.png]
实例源码:

from microbit import *

while True:
 display.scroll('TurnipBit')

视频抢先看

想先看看实拍视频尝尝鲜？ 点击这里 [https://v.qq.com/x/page/e0509rnqn5r.html]。

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 display.scroll HEX [http://turnipbit.com/download.php?fn=display.scroll.hex]

 显示图像

显示图像

显示图像的说明

[显示图像拼]的图例

[image: ../../../_images/display.show.png]
功能：在LED显示屏上面显示相应的图案，此拼必须配合图形块中的插使用。

[显示图像拼]的动画

[image: ../../../_images/display.show.gif]

显示图像例程

激动的心

动手DIY一颗跳动的心。

拼插源码

[image: ../../../_images/display.shows1.png]
实例源码:

from microbit import *

while True:
 display.show(Image.HEART)
 sleep(500)
 display.show(Image.HEART_SMALL)
 sleep(500)

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 display.shows HEX [http://turnipbit.com/download.php?fn=display.shows.hex]

 显示图像（带参数）

显示图像（带参数）

显示图像（带参数）的说明

[显示图像（带参数）拼]的图例

[image: ../../../_images/display.show1.png]
功能：在LED显示屏上面显示相应的图案，此拼必须配合图形块中的插使用，此拼既可以完成显示图案，还可以设置图案的显示模式。

	参数：

	
	第一个参数为设置图案的显示时间。

	第二个参数为设置图案的显示模式，选中则每次都执行。

	第三个参数为设置图案的显示流程模式，选中则循环执行。

	第四个参数为清除显示，选中则在每次执行完毕后清除当前显示。

[显示图像（带参数）拼]的动画

[image: ../../../_images/display.show1.gif]

 打开屏幕

打开屏幕

打开屏幕的说明

[打开屏幕拼]的图例

[image: ../../../_images/display.on.png]
功能：打开板载LED显示屏。

[打开屏幕拼]的动画

[image: ../../../_images/display.on.gif]

 关闭屏幕

关闭屏幕

关闭屏幕的说明

[关闭屏幕拼]的图例

[image: ../../../_images/display.off.png]
功能：打开板载LED显示屏。

[关闭屏幕拼]的动画

[image: ../../../_images/display.off.gif]

 显示是否打开

显示是否打开

显示是否打开的说明

[显示是否打开插]的图例

[image: ../../../_images/display.is_on.png]
功能：判断板载LED显示屏是否打开，返回值为真或假，常作为判断条件使用。

[显示是否打开插]的动画

[image: ../../../_images/display.is_on.gif]

 清除显示内容

清除显示内容

清除显示内容的说明

[清除显示内容拼]的图例

[image: ../../../_images/display.clear.png]
功能：清除当前LED显示屏上面的显示内容。

[清除显示内容拼]的动画

[image: ../../../_images/display.clear.gif]

 按键块

按键块

本教程的目的是初步学习TurnipBit开发板的拖拽控件
的使用和基本例程讲解，

TurnipBit 按键块

	按键A被按下

	按键A曾经按下

	按键A按下的次数

 按键A被按下

按键A被按下

按键A被按下的说明

[按键A被按下插]的图例

[image: ../../../_images/button_a.is_pressed.png]
功能：用来判断按键A是否被按下，返回值为真或假，一般作为判断条件使用。

[按键A被按下插]的动画

[image: ../../../_images/button_a.is_pressed.gif]

按键A被按下例程

按键控制警示牌

动手做一个裁判使用的警示牌，按键A按下的时候，显示“X”，未按下的时候显示“O”。

拼插源码

[image: ../../../_images/button_a.is_pressed1.png]
实例源码:

from microbit import *

while False:
 if button_a.is_pressed():
 display.show(Image("90009:09090:00900:09090:90009"))
 if not button_a.is_pressed():
 display.show(Image("09990:90009:90009:90009:09990"))

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 display.scroll HEX [http://turnipbit.com/download.php?fn=button_a.is_pressed.hex]

 按键A曾经按下

按键A曾经按下

按键A曾经按下的说明

[按键A曾经按下插]的图例

[image: ../../../_images/button_a.was_presses.png]
功能：用来判断按键A是否曾经被按下，返回值为真或假，一般作为判断条件使用。

[按键A曾经按下插]的动画

[image: ../../../_images/button_a.was_pressed.gif]

 按键A按下的次数

按键A按下的次数

按键A按下的次数的说明

[按键A按下的次数插]的图例

[image: ../../../_images/button_a.get_presses.png]
功能：用来判断按键A是否曾经被按下，返回值为当前按键A按下的次数。

[按键A按下的次数插]的动画

[image: ../../../_images/button_a.get_presses.gif]

 图形块

图形块

本教程的目的是初步学习TurnipBit开发板的拖拽控件
的使用和基本例程讲解，

TurnipBit 图形块

	内置图像

	复制图像

	反显图像

	创建图像

 内置图像

内置图像

内置图像的说明

[内置图像插]的图例

[image: ../../../_images/Image.HEART.png]
功能：TurnipBit内置三十五中内置图案，使用者配合 显示图像拼 [http://docs.turnipbit.com/zh/latest/teach/tutorials/display/display.show.html] ，在板载LED显示屏上显示内置图案。

[内置图像插]的动画

[image: ../../../_images/Image.HEART.gif]

内置图像例程

激动的心

动手DIY一颗跳动的心。

拼插源码

[image: ../../../_images/display.shows.png]
实例源码:

from microbit import *

while True:
 display.show(Image.HEART)
 sleep(500)
 display.show(Image.HEART_SMALL)
 sleep(500)

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 display.shows HEX [http://turnipbit.com/download.php?fn=display.shows.hex]

 复制图像

复制图像

复制图像的说明

[复制图像插]的图例

[image: ../../../_images/copy.png]
功能：复制当前插入控件的图像。

[内置图像插]的动画

[image: ../../../_images/copy.gif]

 反显图像

反显图像

反显图像的说明

[反显图像插]的图例

[image: ../../../_images/invert.png]
功能：反显当前插入此空间的图案，可供使用者配合 显示图像拼 [http://docs.turnipbit.com/zh/latest/teach/tutorials/display/display.show.html] 使用，完成在板载LED显示屏上显示反显图案。

[反显图像插]的动画

[image: ../../../_images/invert.gif]

反显图像例程

激动的心

动手DIY一颗跳动的心。

拼插源码

[image: ../../../_images/invertx.png]
实例源码:

from microbit import *

while True:
 display.show(Image.HEART)
 sleep(300)
 display.show(Image.HEART.invert())
 sleep(300)
 .show(Image.HEART.invert())

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 invertx HEX [http://turnipbit.com/download.php?fn=invertx.hex]

 创建图像

创建图像

创建图像的说明

[创建图像插]的图例

[image: ../../../_images/ImageDIY.png]
功能：可以按照使用者意愿创建显示图案，使用者配合 显示图像拼 [http://docs.turnipbit.com/zh/latest/teach/tutorials/display/display.show.html] ，完成在板载LED显示屏上显示创建的图案。

[创建图像插]的动画

[image: ../../../_images/ImageDIY.gif]

创建图像例程

闪烁的“木”字

动手DIY一颗闪烁的“木”字。

拼插源码

[image: ../../../_images/imageDIYS.png]
实例源码:

from microbit import *

 while True:
 display.show(Image("00900:99999:09990:90909:00900"))
 sleep(300)
 display.show(Image("00900:99999:09990:90909:00900").invert())
 sleep(300)

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 ImageDIYS HEX [http://turnipbit.com/download.php?fn=ImageDIYS.hex]

 TurnipBit块

TurnipBit块

本教程的目的是初步学习TurnipBit开发板的拖拽控件
的使用和基本例程讲解，

TurnipBit TurnipBit块

	错误状态码

	复位TurnipBit

	延时

	运行时间

	温度

 错误状态码

错误状态码

错误状态码的说明

[错误状态码拼]的图例

[image: ../../../_images/panic.png]
功能：设置错误状态表示码，用来打印调试代码。

[错误状态码拼]的动画

[image: ../../../_images/panic.gif]

 复位TurnipBit

复位TurnipBit

复位TurnipBit的说明

[复位TurnipBit拼]的图例

[image: ../../../_images/reset.png]
功能：此拼可将TurnipBit进行软复位。

[复位TurnipBit拼]的动画

[image: ../../../_images/reset.gif]

 延时

延时

延时的说明

[延时拼]的图例

[image: ../../../_images/sleep.png]
功能：此拼可将TurnipBit正在运行的程序暂停相应的时间。

	参数：

	
	参数为想要暂停程序的时间，单位为毫秒。

[延时拼]的动画

[image: ../../../_images/sleep.gif]

 运行时间

运行时间

运行时间的说明

[运行时间插]的图例

[image: ../../../_images/running_time.png]
功能：查询当前程序运行的时间，返回值为当前程序运行的时间，单位毫秒。

[运行时间插]的动画

[image: ../../../_images/running_time.gif]

 温度

温度

温度的说明

[温度插]的图例

[image: ../../../_images/temperature.png]
功能：查询当前所在地的温度，返回值为所在地的温度，单位摄氏度。

[温度插]的动画

[image: ../../../_images/temperature.gif]

温度例程

自制温度计

动手DIY制作一个温度计。此DIY需要使用温度插和 滚动消息拼 [http://docs.turnipbit.com/zh/latest/teach/tutorials/display/display.scroll.html] 配合完成。

拼插源码

[image: ../../../_images/temperatures.png]
实例源码:

from microbit import *

while True:
 display.scroll((str(temperature()) + str('')))

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 temperatures HEX [http://turnipbit.com/download.php?fn=temperatures.hex]

 加速度传感器块

加速度传感器块

本教程的目的是初步学习accelerometer开发板的拖拽控件
的使用和基本例程讲解，

TurnipBit 加速度传感器块

	获取当前加速度值

	获取当前动作

	获取历史动作

	获取当前动作

	获取已完成动作

 获取当前加速度值

获取当前加速度值

获取当前加速度值的说明

[获取当前加速度值插]的图例

[image: ../../../_images/accelerometer.png]
功能：获取当前加速度的值，分别可获取X,Y,Z轴的加速度值，返回值为当前加速度的X,Y,Z轴的加速度值。

[获取当前加速度值插]的动画

[image: ../../../_images/accelerometer.gif]

加速度传感器例程

DIY水平测试仪

动手DIY制作一个水平测试仪。此DIY需要使用获取当前加速度值插和 显示图像拼 [http://docs.turnipbit.com/zh/latest/teach/tutorials/display/display.show.html] 和配合 内置图像插 [http://docs.turnipbit.com/zh/latest/teach/tutorials/Image/Image.HEART.html] 完成。

拼插源码

[image: ../../../_images/accelerometers.png]
实例源码:

from microbit import *

while True:
 if accelerometer.get_x() <= 45:
 display.show(Image.ARROW_E)
 if accelerometer.get_x() >= 135:
 display.show(Image.ARROW_W)

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 accelerometers HEX [http://turnipbit.com/download.php?fn=accelerometers.hex]

 获取当前动作

获取当前动作

获取当前动作的说明

[获取当前动作插]的图例

[image: ../../../_images/accelerometer.current_gesture.png]
功能：获取在此之前的执行动作。

[获取当前动作插]的动画

[image: ../../../_images/accelerometer.current_gesture.gif]

 获取历史动作

获取历史动作

获取历史动作的说明

[获取历史动作插]的图例

[image: ../../../_images/accelerometer.get_gestures.png]
功能：获取在此之前的执行动作。

[获取历史动作插]的动画

[image: ../../../_images/accelerometer.get_gestures.gif]

 获取当前动作

获取当前动作

获取当前动作的说明

[获取当前动作插]的图例

[image: ../../../_images/accelerometer.is_gesture.png]
功能：获取当前的执行动作，可判断的动作有很多例如向上，向下，下坠，判断加速度等。

[获取当前动作插]的动画

[image: ../../../_images/accelerometer.is_gesture.gif]

 获取已完成动作

获取已完成动作

获取已完成动作的说明

[获取已完成动作插]的图例

[image: ../../../_images/accelerometer.was_gesture.png]
功能：获取已完成的执行动作，可判断的动作有很多例如向上，向下，下坠，判断加速度等。

[获取已完成动作插]的动画

[image: ../../../_images/accelerometer.was_gesture.gif]

 磁敏传感器块

磁敏传感器块

本教程的目的是初步学习compass开发板的拖拽控件
的使用和基本例程讲解，

TurnipBit 磁敏传感器块

	校正指南针

	指南针磁场强度

	指南针的方向

	指南针是否已校正

 校正指南针

校正指南针

校正指南针的说明

[校正指南针拼]的图例

[image: ../../../_images/compass.calibrate.png]
功能：用来校正指南针的精度，当出现强磁场干扰导致指南针功能不能正常使用，建议校正指南针。

[校正指南针拼]的动画

[image: ../../../_images/compass.calibrate.gif]

 指南针磁场强度

指南针磁场强度

指南针磁场强度的说明

[指南针磁场强度插]的图例

[image: ../../../_images/compass.get_field_strength.png]
功能：用来获取当前的磁场强度，返回值为当前磁场强度。

[指南针磁场强度插]的动画

[image: ../../../_images/compass.get_field_strength.gif]

指南针磁场强度例程

DIY磁场检测仪

动手DIY制作一个磁场检测仪。此DIY需要使用指南针的方向插和 显示图像拼 [http://docs.turnipbit.com/zh/latest/teach/tutorials/display/display.show.html] 和配合 创建图像插 [http://docs.turnipbit.com/zh/latest/teach/tutorials/Image/ImageDIY.html] 配合完成。

拼插源码

[image: ../../../_images/compass.get_field_strengths.png]
实例源码:

from microbit import *

while True:
 if compass.get_field_strength() < 500000:
 display.show(Image("09990:90009:90009:90009:09990"))
 if compass.get_field_strength() > 500000:
 display.show(Image("90009:09090:00900:09090:90009"))

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 compass.get_field_strengths HEX [http://turnipbit.com/download.php?fn=compass.get_field_strengths.hex]

 指南针的方向

指南针的方向

指南针的方向的说明

[指南针的方向插]的图例

[image: ../../../_images/compass.heading.png]
功能：用来获取当前指南针的角度，返回值为当前的相对角度。

[指南针的方向插]的动画

[image: ../../../_images/compass.headings.gif]

指南针的方向例程

自制指南针

动手DIY制作一个指南针。此DIY需要使用指南针的方向插和 显示图像拼 [http://docs.turnipbit.com/zh/latest/teach/tutorials/display/display.show.html] 和配合 内置图像插 [http://docs.turnipbit.com/zh/latest/teach/tutorials/Image/Image.HEART.html] 配合完成。

拼插源码

[image: ../../../_images/compass.headings.png]
实例源码:

from microbit import *

while True:
 if compass.heading() > 0 and compass.heading() <= 90:
 display.show(Image.ARROW_N)
 if compass.heading() > 90 and compass.heading() <= 180:
 display.show(Image.ARROW_E)
 if compass.heading() > 180 and compass.heading() <= 270:
 display.show(Image.ARROW_S)
 if compass.heading() > 270 and compass.heading() <= 360:
 display.show(Image.ARROW_W)

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 compass.heading HEX [http://turnipbit.com/download.php?fn=compass.heading.hex]

 指南针是否已校正

指南针是否已校正

指南针是否已校正的说明

[指南针是否已校正插]的图例

[image: ../../../_images/compass.is_calibrated.png]
功能：用来判断指南针的校正是否完成，返回值为真或假，常用来当做判断条件使用。

[指南针是否已校正插]的动画

[image: ../../../_images/compass.is_calibrated.gif]

 音乐块

音乐块

本教程的目的是初步学习music开发板的拖拽控件
的使用和基本例程讲解，

TurnipBit 音乐块

	内置音乐

	播放音调

	播放音符列表

	恢复音乐设置

	停止音乐播放

	设置节拍

	获取当前节拍

 内置音乐

内置音乐

内置音乐的说明

[内置音乐插]的图例

[image: ../../../_images/music.play.png]
功能：清除当前LED显示屏上面的显示内容。

[内置音乐插]的动画

[image: ../../../_images/music.play.gif]

 播放音调

播放音调

播放音调的说明

[播放音调拼]的图例

[image: ../../../_images/music.pitch.png]
功能：播放指定音调的音乐。

	参数：

	
	第一个参数为指定播放音调。

	第二个参数为指定播放时间。

[播放音调拼]的动画

[image: ../../../_images/music.pitch1.gif]

播放音调

DIY小乐器

动手DIY制作一个小乐器。此DIY过程和原理实施和操作简单，使用代码编程即可完成摇摆TurnipBit控制音调输出。

实例源码:

import music
from microbit import *

while True:
 music.pitch(accelerometer.get_x(), accelerometer.get_y())

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 musics HEX [http://turnipbit.com/download.php?fn=musics.hex]

 播放音符列表

播放音符列表

播放音符列表的说明

[播放音符列表拼]的图例

[image: ../../../_images/music.play1.png]
功能：播放设置好的音符列表。

[播放音符列表拼]的动画

[image: ../../../_images/music.play1.gif]

 恢复音乐设置

恢复音乐设置

恢复音乐设置的说明

[恢复音乐设置拼]的图例

[image: ../../../_images/music.reset.png]
功能：回复当前的音乐设置为默认值。

[恢复音乐设置拼]的动画

[image: ../../../_images/music.reset.gif]

 停止音乐播放

停止音乐播放

停止音乐播放的说明

[停止音乐播放拼]的图例

[image: ../../../_images/music.stop.png]
功能：停止当前正在播放的音乐。

[停止音乐播放拼]的动画

[image: ../../../_images/music.stop.gif]

 设置节拍

设置节拍

设置节拍的说明

[设置节拍拼]的图例

[image: ../../../_images/music.set_tempo.png]
功能：设置输出相应的音乐节拍。

	参数：

	
	第一个参数为设置输出的音乐节拍。

	第二个参数为设置输出的音乐节拍输出的次数。

[设置节拍拼]的动画

[image: ../../../_images/music.set_tempo.gif]

 获取当前节拍

获取当前节拍

获取当前节拍的说明

[获取当前节拍插]的图例

[image: ../../../_images/music.get_tempo.png]
功能：获取当前输出的音乐节拍。

[获取当前节拍插]的动画

[image: ../../../_images/music.get_tempo1.gif]

 micro:bit Micropython API

micro:bit Micropython API

警告

As we work towards a 1.0 release, this API is subject to frequent changes. This page reflects the current micro:bit API in a developer-friendly (but not necessarily kid-friendly) way. The tutorials associated with this documentation are a good place to start for non-developers looking for information.

The microbit module

Everything directly related to interacting with the hardware lives in the microbit module. For ease of use it’s recommended you start all scripts with:

from microbit import *

The following documentation assumes you have done this.

There are a few functions available directly:

sleep for the given number of milliseconds.
sleep(ms)
returns the number of milliseconds since the micro:bit was last switched on.
running_time()
makes the micro:bit enter panic mode (this usually happens when the DAL runs
out of memory, and causes a sad face to be drawn on the display). The error
code can be any arbitrary integer value.
panic(error_code)
resets the micro:bit.
reset()

The rest of the functionality is provided by objects and classes in the microbit module, as described below.

Note that the API exposes integers only (ie no floats are needed, but they may be accepted). We thus use milliseconds for the standard time unit.

Buttons

There are 2 buttons:

button_a
button_b

These are both objects and have the following methods:

returns True or False to indicate if the button is pressed at the time of
the method call.
button.is_pressed()
returns True or False to indicate if the button was pressed since the device
started or the last time this method was called.
button.was_pressed()
returns the running total of button presses, and resets this counter to zero
button.get_presses()

The LED display

The LED display is exposed via the display object:

gets the brightness of the pixel (x,y). Brightness can be from 0 (the pixel
is off) to 9 (the pixel is at maximum brightness).
display.get_pixel(x, y)
sets the brightness of the pixel (x,y) to val (between 0 [off] and 9 [max
brightness], inclusive).
display.set_pixel(x, y, val)
clears the display.
display.clear()
shows the image.
display.show(image, delay=0, wait=True, loop=False, clear=False)
shows each image or letter in the iterable, with delay ms. in between each.
display.show(iterable, delay=400, wait=True, loop=False, clear=False)
scrolls a string across the display (more exciting than display.show for
written messages).
display.scroll(string, delay=400)

Pins

Provide digital and analog input and output functionality, for the pins in the connector. Some pins are connected internally to the I/O that drives the LED matrix and the buttons.

Each pin is provided as an object directly in the microbit module. This keeps the API relatively flat, making it very easy to use:

	pin0

	pin1

	...

	pin15

	pin16

	Warning: P17-P18 (inclusive) are unavailable.

	pin19

	pin20

Each of these pins are instances of the MicroBitPin class, which offers the following API:

value can be 0, 1, False, True
pin.write_digital(value)
returns either 1 or 0
pin.read_digital()
value is between 0 and 1023
pin.write_analog(value)
returns an integer between 0 and 1023
pin.read_analog()
sets the period of the PWM output of the pin in milliseconds
(see https://en.wikipedia.org/wiki/Pulse-width_modulation)
pin.set_analog_period(int)
sets the period of the PWM output of the pin in microseconds
(see https://en.wikipedia.org/wiki/Pulse-width_modulation)
pin.set_analog_period_microseconds(int)
returns boolean
pin.is_touched()

Images

注解

You don’t always need to create one of these yourself - you can access the
image shown on the display directly with display.image. display.image
is just an instance of Image, so you can use all of the same methods.

Images API:

creates an empty 5x5 image
image = Image()
create an image from a string - each character in the string represents an
LED - 0 (or space) is off and 9 is maximum brightness. The colon ":"
indicates the end of a line.
image = Image('90009:09090:00900:09090:90009:')
create an empty image of given size
image = Image(width, height)
initialises an Image with the specified width and height. The buffer
should be an array of length width * height
image = Image(width, height, buffer)

methods
returns the image's width (most often 5)
image.width()
returns the image's height (most often 5)
image.height()
sets the pixel at the specified position (between 0 and 9). May fail for
constant images.
image.set_pixel(x, y, value)
gets the pixel at the specified position (between 0 and 9)
image.get_pixel(x, y)
returns a new image created by shifting the picture left 'n' times.
image.shift_left(n)
returns a new image created by shifting the picture right 'n' times.
image.shift_right(n)
returns a new image created by shifting the picture up 'n' times.
image.shift_up(n)
returns a new image created by shifting the picture down 'n' times.
image.shift_down(n)
get a compact string representation of the image
repr(image)
get a more readable string representation of the image
str(image)

#operators
returns a new image created by superimposing the two images
image + image
returns a new image created by multiplying the brightness of each pixel by n
image * n

built-in images.
Image.HEART
Image.HEART_SMALL
Image.HAPPY
Image.SMILE
Image.SAD
Image.CONFUSED
Image.ANGRY
Image.ASLEEP
Image.SURPRISED
Image.SILLY
Image.FABULOUS
Image.MEH
Image.YES
Image.NO
Image.CLOCK12 # clock at 12 o' clock
Image.CLOCK11
... # many clocks (Image.CLOCKn)
Image.CLOCK1 # clock at 1 o'clock
Image.ARROW_N
... # arrows pointing N, NE, E, SE, S, SW, W, NW (microbit.Image.ARROW_direction)
Image.ARROW_NW
Image.TRIANGLE
Image.TRIANGLE_LEFT
Image.CHESSBOARD
Image.DIAMOND
Image.DIAMOND_SMALL
Image.SQUARE
Image.SQUARE_SMALL
Image.RABBIT
Image.COW
Image.MUSIC_CROTCHET
Image.MUSIC_QUAVER
Image.MUSIC_QUAVERS
Image.PITCHFORK
Image.XMAS
Image.PACMAN
Image.TARGET
Image.TSHIRT
Image.ROLLERSKATE
Image.DUCK
Image.HOUSE
Image.TORTOISE
Image.BUTTERFLY
Image.STICKFIGURE
Image.GHOST
Image.SWORD
Image.GIRAFFE
Image.SKULL
Image.UMBRELLA
Image.SNAKE
built-in lists - useful for animations, e.g. display.show(Image.ALL_CLOCKS)
Image.ALL_CLOCKS
Image.ALL_ARROWS

The accelerometer

The accelerometer is accessed via the accelerometer object:

read the X axis of the device. Measured in milli-g.
accelerometer.get_x()
read the Y axis of the device. Measured in milli-g.
accelerometer.get_y()
read the Z axis of the device. Measured in milli-g.
accelerometer.get_z()
get tuple of all three X, Y and Z readings (listed in that order).
accelerometer.get_values()
return the name of the current gesture.
accelerometer.current_gesture()
return True or False to indicate if the named gesture is currently active.
accelerometer.is_gesture(name)
return True or False to indicate if the named gesture was active since the
last call.
accelerometer.was_gesture(name)
return a tuple of the gesture history. The most recent is listed last.
accelerometer.get_gestures()

The recognised gestures are: up, down, left, right, face up, face down, freefall, 3g, 6g, 8g, shake.

The compass

The compass is accessed via the compass object:

calibrate the compass (this is needed to get accurate readings).
compass.calibrate()
return a numeric indication of degrees offset from "north".
compass.heading()
return an numeric indication of the strength of magnetic field around
the micro:bit.
compass.get_field_strength()
returns True or False to indicate if the compass is calibrated.
compass.is_calibrated()
resets the compass to a pre-calibration state.
compass.clear_calibration()

I2C bus

There is an I2C bus on the micro:bit that is exposed via the i2c object. It has the following methods:

read n bytes from device with addr; repeat=True means a stop bit won't
be sent.
i2c.read(addr, n, repeat=False)
write buf to device with addr; repeat=True means a stop bit won't be sent.
i2c.write(addr, buf, repeat=False)

UART

Use uart to communicate with a serial device connected to the device’s I/O pins:

set up communication (use pins 0 [TX] and 1 [RX]) with a baud rate of 9600.
uart.init()
return True or False to indicate if there are incoming characters waiting to
be read.
uart.any()
return (read) n incoming characters.
uart.read(n)
return (read) as much incoming data as possible.
uart.readall()
return (read) all the characters to a newline character is reached.
uart.readline()
read bytes into the referenced buffer.
uart.readinto(buffer)
write bytes from the buffer to the connected device.
uart.write(buffer)

 Microbit Module

Microbit Module

The microbit module gives you access to all the hardware that is built-in
into your board.

Functions

	
microbit.panic(n)

	Enter a panic mode. Requires restart. Pass in an arbitrary integer <= 255
to indicate a status:

microbit.panic(255)

	
microbit.reset()

	Restart the board.

	
microbit.sleep(n)

	Wait for n milliseconds. One second is 1000 milliseconds, so:

microbit.sleep(1000)

will pause the execution for one second. n can be an integer or
a floating point number.

	
microbit.running_time()

	Return the number of milliseconds since the board was switched on or
restarted.

	
microbit.temperature()

	Return the temperature of the micro:bit in degrees Celcius.

Attributes

	Buttons

	Input/Output Pins

Classes

	Image

Modules

	Display

	UART

	SPI

	I²C

	Accelerometer

	Compass

 Buttons

Buttons

There are two buttons on the board, called button_a and button_b.

Attributes

	
button_a

	A Button instance (see below) representing the left button.

	
button_b

	Represents the right button.

Classes

	
class Button

	Represents a button.

注解

This class is not actually available to the user, it is only used by
the two button instances, which are provided already initialized.

	
is_pressed()

	Returns True if the specified button button is pressed, and
False otherwise.

	
was_pressed()

	Returns True or False to indicate if the button was pressed
since the device started or the last time this method was called.

	
get_presses()

	Returns the running total of button presses, and resets this total
to zero before returning.

Example

import microbit

while True:
 if microbit.button_a.is_pressed() and microbit.button_b.is_pressed():
 microbit.display.scroll("AB")
 break
 elif microbit.button_a.is_pressed():
 microbit.display.scroll("A")
 elif microbit.button_b.is_pressed():
 microbit.display.scroll("B")
 microbit.sleep(100)

 Input/Output Pins

Input/Output Pins

The pins are your board’s way to communicate with external devices connected to
it. There are 19 pins for your disposal, numbered 0-16 and 19-20. Pins 17 and
18 are not available.

For example, the script below will change the display on the micro:bit
depending upon the digital reading on pin 0:

from microbit import *

while True:
 if pin0.read_digital():
 display.show(Image.HAPPY)
 else:
 display.show(Image.SAD)

Pin Functions

[image: _images/pinout.png]
Those pins are available as attributes on the microbit
module:microbit.pin0 - microbit.pin20.

	Pin
	Type
	Function

	0
	Touch
	Pad 0

	1
	Touch
	Pad 1

	2
	Touch
	Pad 2

	3
	Analog
	Column 1

	4
	Analog
	Column 2

	5
	Digital
	Button A

	6
	Digital
	Row 2

	7
	Digital
	Row 1

	8
	Digital
	

	9
	Digital
	Row 3

	10
	Analog
	Column 3

	11
	Digital
	Button B

	12
	Digital
	

	13
	Digital
	SPI MOSI

	14
	Digital
	SPI MISO

	15
	Digital
	SPI SCK

	16
	Digital
	

	
	
	

	19
	Digital
	I2C SCL

	20
	Digital
	I2C SDA

The above table summarizes the pins available, their types (see below) and what
they are internally connected to.

Pulse-Width Modulation

The pins of your board cannot output analog signal the way an audio amplifier
can do it – by modulating the voltage on the pin. Those pins can only either
enable the full 3.3V output, or pull it down to 0V. However, it is still
possible to control the brightness of LEDs or speed of an electric motor, by
switching that voltage on and off very fast, and controlling how long it is on
and how long it is off. This technique is called Pulse-Width Modulation (PWM),
and that’s what the write_analog method below does.

[image: _images/pwm.png]
Above you can see the diagrams of three different PWM signals. All of them have
the same period (and thus frequency), but they have different duty cycles.

The first one would be generated by write_analog(511), as it has exactly
50% duty – the power is on half of the time, and off half of the time. The
result of that is that the total energy of this signal is the same, as if it
was 1.65V instead of 3.3V.

The second signal has 25% duty cycle, and could be generated with
write_analog(255). It has similar effect as if 0.825V was being output on
that pin.

The third signal has 75% duty cycle, and can be generated with
write_analog(767). It has three times as much energy, as the second signal,
and is equivalent to outputting 2.475V on th pin.

Note that this works well with devices such as motors, which have huge inertia
by themselves, or LEDs, which blink too fast for the human eye to see the
difference, but will not work so good with generating sound waves. This board
can only generate square wave sounds on itself, which sound pretty much like
the very old computer games – mostly because those games also only could do
that.

Classes

There are three kinds of pins, differing in what is available for them. They
are represented by the classes listed below. Note that they form a hierarchy,
so that each class has all the functionality of the previous class, and adds
its own to that.

注解

Those classes are not actually available for the user, you can’t create
new instances of them. You can only use the instances already provided,
representing the physical pins on your board.

	
class microbit.MicroBitDigitalPin

	
	
read_digital()

	Return 1 if the pin is high, and 0 if it’s low.

	
write_digital(value)

	Set the pin to high if value is 1, or to low, if it is 0.

	
class microbit.MicroBitAnalogDigitalPin

	
	
read_analog()

	Read the voltage applied to the pin, and return it as an integer
between 0 (meaning 0V) and 1023 (meaning 3.3V).

	
write_analog(value)

	Output a PWM signal on the pin, with the duty cycle proportional to
the provided value. The value may be either an integer or a
floating point number between 0 (0% duty cycle) and 1023 (100% duty).

	
set_analog_period(period)

	Set the period of the PWM signal being output to period in
milliseconds. The minimum valid value is 1ms.

	
set_analog_period_microseconds(period)

	Set the period of the PWM signal being output to period in
microseconds. The minimum valid value is 35µs.

	
class microbit.MicroBitTouchPin

	
	
is_touched()

	Return True if the pin is being touched with a finger, otherwise
return False.

This test is done by measuring the capacitance of the pin together with
whatever is connected to it. Human body has quite a large capacitance,
so touching the pin gives a dramatic change in reading, which can be
detected.

The pull mode for a pin is automatically configured when the pin changes to an
input mode. Input modes are when you call read_analog / read_digital /
is_touched. The pull mode for these is, respectively, NO_PULL,
PULL_DOWN, PULL_UP. Only when in read_digital mode can you call
set_pull to change the pull mode from the default.

注解

Also note, the micro:bit has external weak (10M) pull-ups fitted on pins
0, 1 and 2 only, in order for the touch sensing to work. See the edge
connector data sheet here:
http://tech.microbit.org/hardware/edgeconnector_ds/

 Image

Image

The Image class is used to create images that can be displayed easily on
the device’s LED matrix. Given an image object it’s possible to display it via
the display API:

display.show(Image.HAPPY)

[image: image-smile.png]

Classes

	
class microbit.Image(string)

	
class microbit.Image(width=None, height=None, buffer=None)

	If string is used, it has to consist of digits 0-9 arranged into
lines, describing the image, for example:

image = Image("90009:"
 "09090:"
 "00900:"
 "09090:"
 "90009")

will create a 5×5 image of an X. The end of a line is indicated by a colon.
It’s also possible to use a newline (n) to indicate the end of a line
like this:

image = Image("90009\n"
 "09090\n"
 "00900\n"
 "09090\n"
 "90009")

The other form creates an empty image with width columns and
height rows. Optionally buffer can be an array of
width``×``height integers in range 0-9 to initialize the image.

	
width()

	Return the number of columns in the image.

	
height()

	Return the numbers of rows in the image.

	
set_pixel(x, y, value)

	Set the brightness of the pixel at column x and row y to the
value, which has to be between 0 (dark) and 9 (bright).

This method will raise an exception when called on any of the built-in
read-only images, like Image.HEART.

	
get_pixel(x, y)

	Return the brightness of pixel at column x and row y as an
integer between 0 and 9.

	
shift_left(n)

	Return a new image created by shifting the picture left by n
columns.

	
shift_right(n)

	Same as image.shift_left(-n).

	
shift_up(n)

	Return a new image created by shifting the picture up by n rows.

	
shift_down(n)

	Same as image.shift_up(-n).

	
crop(x, y, w, h)

	Return a new image by cropping the picture to a width of w and a
height of h, starting with the pixel at column x and row y.

	
copy()

	Return an exact copy of the image.

	
invert()

	Return a new image by inverting the brightness of the pixels in the
source image.

	
fill(value)

	Set the brightness of all the pixels in the image to the
value, which has to be between 0 (dark) and 9 (bright).

This method will raise an exception when called on any of the built-in
read-only images, like Image.HEART.

	
blit(src, x, y, w, h, xdest=0, ydest=0)

	Copy the rectangle defined by x, y, w, h from the image src into
this image at xdest, ydest.
Areas in the source rectangle, but outside the source image are treated as having a value of 0.

shift_left(), shift_right(), shift_up(), shift_down() and crop()
can are all implemented by using blit().
For example, img.crop(x, y, w, h) can be implemented as:

def crop(self, x, y, w, h):
 res = Image(w, h)
 res.blit(self, x, y, w, h)
 return res

Attributes

The Image class also has the following built-in instances of itself
included as its attributes (the attribute names indicate what the image
represents):

	Image.HEART

	Image.HEART_SMALL

	Image.HAPPY

	Image.SMILE

	Image.SAD

	Image.CONFUSED

	Image.ANGRY

	Image.ASLEEP

	Image.SURPRISED

	Image.SILLY

	Image.FABULOUS

	Image.MEH

	Image.YES

	Image.NO

	Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5,
Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

	Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E,
Image.ARROW_SE, Image.ARROW_S, Image.ARROW_SW,
Image.ARROW_W, Image.ARROW_NW

	Image.TRIANGLE

	Image.TRIANGLE_LEFT

	Image.CHESSBOARD

	Image.DIAMOND

	Image.DIAMOND_SMALL

	Image.SQUARE

	Image.SQUARE_SMALL

	Image.RABBIT

	Image.COW

	Image.MUSIC_CROTCHET

	Image.MUSIC_QUAVER

	Image.MUSIC_QUAVERS

	Image.PITCHFORK

	Image.XMAS

	Image.PACMAN

	Image.TARGET

	Image.TSHIRT

	Image.ROLLERSKATE

	Image.DUCK

	Image.HOUSE

	Image.TORTOISE

	Image.BUTTERFLY

	Image.STICKFIGURE

	Image.GHOST

	Image.SWORD

	Image.GIRAFFE

	Image.SKULL

	Image.UMBRELLA

	Image.SNAKE

Finally, related collections of images have been grouped together:

* ``Image.ALL_CLOCKS``
* ``Image.ALL_ARROWS``

Operations

repr(image)

Get a compact string representation of the image.

str(image)

Get a readable string representation of the image.

image1 + image2

Create a new image by adding the brightness values from the two images for
each pixel.

image * n

Create a new image by multiplying the brightness of each pixel by n.

 Display

Display

This module controls the 5×5 LED display on the front of your board. It can
be used to display images, animations and even text.

[image: _images/scroll-hello.gif]

Functions

	
microbit.display.get_pixel(x, y)

	Return the brightness of the LED at column x and row y as an
integer between 0 (off) and 9 (bright).

	
microbit.display.set_pixel(x, y, value)

	Set the brightness of the LED at column x and row y to value,
which has to be an integer between 0 and 9.

	
microbit.display.clear()

	Set the brightness of all LEDs to 0 (off).

	
microbit.display.show(image)

	Display the image.

	
microbit.display.show(iterable, delay=400, *, wait=True, loop=False, clear=False)

	Display images or letters from the iterable in sequence, with delay
milliseconds between them.

If wait is True, this function will block until the animation is
finished, otherwise the animation will happen in the background.

If loop is True, the animation will repeat forever.

If clear is True, the display will be cleared after the iterable has finished.

Note that the wait, loop and clear arguments must be specified
using their keyword.

注解

If using a generator as the iterable, then take care not to allocate any memory
in the generator as allocating memory in an interrupt is prohibited and will raise a
MemoryError.

	
microbit.display.scroll(string, delay=150, *, wait=True, loop=False, monospace=False)

	Similar to show, but scrolls the string horizontally instead. The
delay parameter controls how fast the text is scrolling.

If wait is True, this function will block until the animation is
finished, otherwise the animation will happen in the background.

If loop is True, the animation will repeat forever.

If monospace is True, the characters will all take up 5 pixel-columns
in width, otherwise there will be exactly 1 blank pixel-column between each
character as they scroll.

Note that the wait, loop and monospace arguments must be specified
using their keyword.

	
microbit.display.on()

	Use on() to turn on the display.

	
microbit.display.off()

	Use off() to turn off the display (thus allowing you to re-use the GPIO
pins associated with the display for other purposes).

	
microbit.display.is_on()

	Returns True if the display is on, otherwise returns False.

Example

To continuously scroll a string across the display, and do it in the background,
you can use:

import microbit

microbit.display.scroll('Hello!', wait=False, loop=True)

 UART

UART

The uart module lets you talk to a device connected to your board using
a serial interface.

Functions

	
microbit.uart.init(baudrate=9600, bits=8, parity=None, stop=1, *, tx=None, rx=None)

	Initialize serial communication with the specified parameters on the
specified tx and rx pins. Note that for correct communication, the parameters
have to be the same on both communicating devices.

警告

Initializing the UART on external pins will cause the Python console on
USB to become unaccessible, as it uses the same hardware. To bring the
console back you must reinitialize the UART without passing anything for
``tx’’ or ``rx’’ (or passing ``None’’ to these arguments). This means
that calling ``uart.init(115200)’’ is enough to restore the Python console.

The baudrate defines the speed of communication. Common baud
rates include:

	9600

	14400

	19200

	28800

	38400

	57600

	115200

The bits defines the size of bytes being transmitted, and the board
only supports 8. The parity parameter defines how parity is checked,
and it can be None, microbit.uart.ODD or microbit.uart.EVEN.
The stop parameter tells the number of stop bits, and has to be 1 for
this board.

If tx and rx are not specified then the internal USB-UART TX/RX pins
are used which connect to the USB serial convertor on the micro:bit, thus
connecting the UART to your PC. You can specify any other pins you want by
passing the desired pin objects to the tx and rx parameters.

注解

When connecting the device, make sure you “cross” the wires – the TX
pin on your board needs to be connected with the RX pin on the device,
and the RX pin – with the TX pin on the device. Also make sure the
ground pins of both devices are connected.

	
uart.any()

	Return True if any characters waiting, else False.

	
uart.read([nbytes])

	Read characters. If nbytes is specified then read at most that many
bytes.

	
uart.readall()

	Read as much data as possible.

Return value: a bytes object or None on timeout.

	
uart.readinto(buf[, nbytes])

	Read bytes into the buf. If nbytes is specified then read at most
that many bytes. Otherwise, read at most len(buf) bytes.

Return value: number of bytes read and stored into buf or None on
timeout.

	
uart.readline()

	Read a line, ending in a newline character.

Return value: the line read or None on timeout. The newline character is
included in the returned bytes.

	
uart.write(buf)

	Write the buffer of bytes to the bus.

Return value: number of bytes written or None on timeout.

 SPI

SPI

The spi module lets you talk to a device connected to your board using
a serial peripheral interface (SPI) bus. SPI uses a so-called master-slave
architecture with a single master. You will need to specify the connections
for three signals:

	SCLK : Serial Clock (output from master).

	MOSI : Master Output, Slave Input (output from master).

	MISO : Master Input, Slave Output (output from slave).

Functions

	
microbit.spi.init(baudrate=1000000, bits=8, mode=0, sclk=pin13, mosi=pin15, miso=pin14)

	Initialize SPI communication with the specified parameters on the
specified pins. Note that for correct communication, the parameters
have to be the same on both communicating devices.

The baudrate defines the speed of communication.

The bits defines the size of bytes being transmitted. Currently only
bits=8 is supported. However, this may change in the future.

The mode determines the combination of clock polarity and phase
according to the following convention, with polarity as the high order bit
and phase as the low order bit:

	SPI Mode
	Polarity (CPOL)
	Phase (CPHA)

	0
	0
	0

	1
	0
	1

	2
	1
	0

	3
	1
	1

Polarity (aka CPOL) 0 means that the clock is at logic value 0 when idle
and goes high (logic value 1) when active; polarity 1 means the clock is
at logic value 1 when idle and goes low (logic value 0) when active. Phase
(aka CPHA) 0 means that data is sampled on the leading edge of the clock,
and 1 means on the trailing edge
(viz. https://en.wikipedia.org/wiki/Signal_edge).

The sclk, mosi and miso arguments specify the pins to use for
each type of signal.

	
spi.read(nbytes)

	Read at most nbytes. Returns what was read.

	
spi.write(buffer)

	Write the buffer of bytes to the bus.

	
spi.write_readinto(out, in)

	Write the out buffer to the bus and read any response into the in
buffer. The length of the buffers should be the same. The buffers can be
the same object.

 I²C

I²C

The i2c module lets you communicate with devices connected to your board
using the I²C bus protocol. There can be multiple slave devices connected at
the same time, and each one has its own unique address, that is either fixed
for the device or configured on it. Your board acts as the I²C master.

We use 7-bit addressing for devices because of the reasons stated
here [http://www.totalphase.com/support/articles/200349176-7-bit-8-bit-and-10-bit-I2C-Slave-Addressing].

This may be different to other micro:bit related solutions.

How exactly you should communicate with the devices, that is, what bytes to
send and how to interpret the responses, depends on the device in question and
should be described separately in that device’s documentation.

Functions

	
microbit.i2c.init(freq=100000, sda=pin20, scl=pin19)

	Re-initialize peripheral with the specified clock frequency freq on the
specified sda and scl pins.

警告

Changing the I²C pins from defaults will make the accelerometer and
compass stop working, as they are connected internally to those pins.

	
microbit.i2c.read(addr, n, repeat=False)

	Read n bytes from the device with 7-bit address addr. If repeat
is True, no stop bit will be sent.

	
microbit.i2c.write(addr, buf, repeat=False)

	Write bytes from buf to the device with 7-bit address addr. If
repeat is True, no stop bit will be sent.

Connecting

You should connect the device’s SCL pin to micro:bit pin 19, and the
device’s SDA pin to micro:bit pin 20. You also must connect the device’s
ground to the micro:bit ground (pin GND). You may need to power the device
using an external power supply or the micro:bit.

There are internal pull-up resistors on the I²C lines of the board, but with
particularly long wires or large number of devices you may need to add
additional pull-up resistors, to ensure noise-free communication.

 Accelerometer

Accelerometer

This object gives you access to the on-board accelerometer. The accelerometer
also provides convenience functions for detecting gestures. The
recognised gestures are: up, down, left, right, face up,
face down, freefall, 3g, 6g, 8g, shake.

Functions

	
microbit.accelerometer.get_x()

	Get the acceleration measurement in the x axis, as a positive or
negative integer, depending on the direction.

	
microbit.accelerometer.get_y()

	Get the acceleration measurement in the y axis, as a positive or
negative integer, depending on the direction.

	
microbit.accelerometer.get_z()

	Get the acceleration measurement in the z axis, as a positive or
negative integer, depending on the direction.

	
microbit.accelerometer.get_values()

	Get the acceleration measurements in all axes at once, as a three-element
tuple of integers ordered as X, Y, Z.

	
microbit.accelerometer.current_gesture()

	Return the name of the current gesture.

注解

MicroPython understands the following gesture names: "up", "down",
"left", "right", "face up", "face down", "freefall",
"3g", "6g", "8g", "shake". Gestures are always
represented as strings.

	
microbit.accelerometer.is_gesture(name)

	Return True or False to indicate if the named gesture is currently active.

	
microbit.accelerometer.was_gesture(name)

	Return True or False to indicate if the named gesture was active since the
last call.

	
microbit.accelerometer.get_gestures()

	Return a tuple of the gesture history. The most recent is listed last.
Also clears the gesture history before returning.

Examples

A fortune telling magic 8-ball. Ask a question then shake the device for an
answer.

Simple Slalom. Move the device to avoid the obstacles.

 Compass

Compass

This module lets you access the built-in electronic compass. Before using,
the compass should be calibrated, otherwise the readings may be wrong.

警告

Calibrating the compass will cause your program to pause until calibration
is complete. Calibration consists of a little game to draw a circle on the
LED display by rotating the device.

Functions

	
microbit.compass.calibrate()

	Starts the calibration process. An instructive message will be scrolled
to the user after which they will need to rotate the device in order to
draw a circle on the LED display.

	
microbit.compass.is_calibrated()

	Returns True if the compass has been successfully calibrated, and
returns False otherwise.

	
microbit.compass.clear_calibration()

	Undoes the calibration, making the compass uncalibrated again.

	
microbit.compass.get_x()

	Gives the reading of the magnetic force on the x axis, as a
positive or negative integer, depending on the direction of the
force.

	
microbit.compass.get_y()

	Gives the reading of the magnetic force on the x axis, as a
positive or negative integer, depending on the direction of the
force.

	
microbit.compass.get_z()

	Gives the reading of the magnetic force on the x axis, as a
positive or negative integer, depending on the direction of the
force.

	
microbit.compass.heading()

	Gives the compass heading, calculated from the above readings, as an
integer in the range from 0 to 360, representing the angle in degrees,
clockwise, with north as 0.
If the compass has not been calibrated, then this will call calibrate.

	
microbit.compass.get_field_strength()

	Returns an integer indication of the magnitude of the magnetic field around
the device.

Example

 Accelerometer

Accelerometer

This object gives you access to the on-board accelerometer. The accelerometer
also provides convenience functions for detecting gestures. The
recognised gestures are: up, down, left, right, face up,
face down, freefall, 3g, 6g, 8g, shake.

Functions

	
microbit.accelerometer.get_x()

	Get the acceleration measurement in the x axis, as a positive or
negative integer, depending on the direction.

	
microbit.accelerometer.get_y()

	Get the acceleration measurement in the y axis, as a positive or
negative integer, depending on the direction.

	
microbit.accelerometer.get_z()

	Get the acceleration measurement in the z axis, as a positive or
negative integer, depending on the direction.

	
microbit.accelerometer.get_values()

	Get the acceleration measurements in all axes at once, as a three-element
tuple of integers ordered as X, Y, Z.

	
microbit.accelerometer.current_gesture()

	Return the name of the current gesture.

注解

MicroPython understands the following gesture names: "up", "down",
"left", "right", "face up", "face down", "freefall",
"3g", "6g", "8g", "shake". Gestures are always
represented as strings.

	
microbit.accelerometer.is_gesture(name)

	Return True or False to indicate if the named gesture is currently active.

	
microbit.accelerometer.was_gesture(name)

	Return True or False to indicate if the named gesture was active since the
last call.

	
microbit.accelerometer.get_gestures()

	Return a tuple of the gesture history. The most recent is listed last.
Also clears the gesture history before returning.

Examples

A fortune telling magic 8-ball. Ask a question then shake the device for an
answer.

Simple Slalom. Move the device to avoid the obstacles.

 Bluetooth

Bluetooth

While the BBC micro:bit has hardware capable of allowing the device to work as
a Bluetooth Low Energy (BLE) device, it only has 16k of RAM. The BLE stack
alone takes up 12k RAM which means there’s not enough room to run MicroPython.

Future versions of the device may come with 32k RAM which would be sufficient.
However, until such time it’s highly unlikely MicroPython will support BLE.

注解

MicroPython uses the radio hardware with the radio module. This allows
users to create simple yet effective wireless networks of micro:bit
devices.

Furthermore, the protocol used in the radio module is a lot simpler
than BLE, making it far easier to use in an educational context.

 Buttons

Buttons

There are two buttons on the board, called button_a and button_b.

Attributes

	
button_a

	A Button instance (see below) representing the left button.

	
button_b

	Represents the right button.

Classes

	
class Button

	Represents a button.

注解

This class is not actually available to the user, it is only used by
the two button instances, which are provided already initialized.

	
is_pressed()

	Returns True if the specified button button is pressed, and
False otherwise.

	
was_pressed()

	Returns True or False to indicate if the button was pressed
since the device started or the last time this method was called.

	
get_presses()

	Returns the running total of button presses, and resets this total
to zero before returning.

Example

import microbit

while True:
 if microbit.button_a.is_pressed() and microbit.button_b.is_pressed():
 microbit.display.scroll("AB")
 break
 elif microbit.button_a.is_pressed():
 microbit.display.scroll("A")
 elif microbit.button_b.is_pressed():
 microbit.display.scroll("B")
 microbit.sleep(100)

 Compass

Compass

This module lets you access the built-in electronic compass. Before using,
the compass should be calibrated, otherwise the readings may be wrong.

警告

Calibrating the compass will cause your program to pause until calibration
is complete. Calibration consists of a little game to draw a circle on the
LED display by rotating the device.

Functions

	
microbit.compass.calibrate()

	Starts the calibration process. An instructive message will be scrolled
to the user after which they will need to rotate the device in order to
draw a circle on the LED display.

	
microbit.compass.is_calibrated()

	Returns True if the compass has been successfully calibrated, and
returns False otherwise.

	
microbit.compass.clear_calibration()

	Undoes the calibration, making the compass uncalibrated again.

	
microbit.compass.get_x()

	Gives the reading of the magnetic force on the x axis, as a
positive or negative integer, depending on the direction of the
force.

	
microbit.compass.get_y()

	Gives the reading of the magnetic force on the x axis, as a
positive or negative integer, depending on the direction of the
force.

	
microbit.compass.get_z()

	Gives the reading of the magnetic force on the x axis, as a
positive or negative integer, depending on the direction of the
force.

	
microbit.compass.heading()

	Gives the compass heading, calculated from the above readings, as an
integer in the range from 0 to 360, representing the angle in degrees,
clockwise, with north as 0.
If the compass has not been calibrated, then this will call calibrate.

	
microbit.compass.get_field_strength()

	Returns an integer indication of the magnitude of the magnetic field around
the device.

Example

 Display

Display

This module controls the 5×5 LED display on the front of your board. It can
be used to display images, animations and even text.

[image: _images/scroll-hello.gif]

Functions

	
microbit.display.get_pixel(x, y)

	Return the brightness of the LED at column x and row y as an
integer between 0 (off) and 9 (bright).

	
microbit.display.set_pixel(x, y, value)

	Set the brightness of the LED at column x and row y to value,
which has to be an integer between 0 and 9.

	
microbit.display.clear()

	Set the brightness of all LEDs to 0 (off).

	
microbit.display.show(image)

	Display the image.

	
microbit.display.show(iterable, delay=400, *, wait=True, loop=False, clear=False)

	Display images or letters from the iterable in sequence, with delay
milliseconds between them.

If wait is True, this function will block until the animation is
finished, otherwise the animation will happen in the background.

If loop is True, the animation will repeat forever.

If clear is True, the display will be cleared after the iterable has finished.

Note that the wait, loop and clear arguments must be specified
using their keyword.

注解

If using a generator as the iterable, then take care not to allocate any memory
in the generator as allocating memory in an interrupt is prohibited and will raise a
MemoryError.

	
microbit.display.scroll(string, delay=150, *, wait=True, loop=False, monospace=False)

	Similar to show, but scrolls the string horizontally instead. The
delay parameter controls how fast the text is scrolling.

If wait is True, this function will block until the animation is
finished, otherwise the animation will happen in the background.

If loop is True, the animation will repeat forever.

If monospace is True, the characters will all take up 5 pixel-columns
in width, otherwise there will be exactly 1 blank pixel-column between each
character as they scroll.

Note that the wait, loop and monospace arguments must be specified
using their keyword.

	
microbit.display.on()

	Use on() to turn on the display.

	
microbit.display.off()

	Use off() to turn off the display (thus allowing you to re-use the GPIO
pins associated with the display for other purposes).

	
microbit.display.is_on()

	Returns True if the display is on, otherwise returns False.

Example

To continuously scroll a string across the display, and do it in the background,
you can use:

import microbit

microbit.display.scroll('Hello!', wait=False, loop=True)

 Local Persistent File System

Local Persistent File System

It is useful to store data in a persistent manner so that it remains intact
between restarts of the device. On traditional computers this is often achieved
by a file system consisting of named files that hold raw data, and named
directories that contain files. Python supports the various operations needed
to work with such file systems.

However, since the micro:bit is a limited device in terms of both hardware and
storage capacity MicroPython provides a small subset of the functions needed
to persist data on the device. Because of memory constraints there is
approximately 30k of storage available on the file system.

警告

Re-flashing the device will DESTROY YOUR DATA.

Since the file system is stored in the micro:bit’s flash memory and
flashing the device rewrites all the available flash memory then all your
data will be lost if you flash your device.

However, if you switch your device off the data will remain intact until
you either delete it (see below) or re-flash the device.

MicroPython on the micro:bit provides a flat file system; i.e. there is no
notion of a directory hierarchy, the file system is just a list of named
files. Reading and writing a file is achieved via the standard Python open
function and the resulting file-like object (representing the file) of types
TextIO or BytesIO. Operations for working with files on the file system
(for example, listing or deleting files) are contained within the
os module.

If a file ends in the .py file extension then it can be imported. For
example, a file named hello.py can be imported like this: import hello.

An example session in the MicroPython REPL may look something like this:

>>> with open('hello.py', 'w') as hello:
... hello.write("print('Hello')")
...
>>> import hello
Hello
>>> with open('hello.py') as hello:
... print(hello.read())
...
print('Hello')
>>> import os
>>> os.listdir()
['hello.py']
>>> os.remove('hello.py')
>>> os.listdir()
[]

	
open(filename, mode='r')

	Returns a file object representing the file named in the argument
filename. The mode defaults to 'r' which means open for reading in
text mode. The other common mode is 'w' for writing (overwriting the
content of the file if it already exists). Two other modes are available
to be used in conjunction with the ones describes above: 't' means
text mode (for reading and writing strings) and 'b' means binary mode
(for reading and writing bytes). If these are not specified then 't'
(text mode) is assumed. When in text mode the file object will be an
instance of TextIO. When in binary mode the file object will be an
instance of BytesIO. For example, use 'rb' to read binary data from
a file.

	
class TextIO

	
class BytesIO

	Instances of these classes represent files in the micro:bit’s flat file
system. The TextIO class is used to represent text files. The BytesIO
class is used to represent binary files. They work in exactly the same
except that TextIO works with strings and BytesIO works with bytes.

You do not directly instantiate these classes. Rather, an appropriately
configured instance of the class is returned by the open function
described above.

	
close()

	Flush and close the file. This method has no effect if the file is
already closed. Once the file is closed, any operation on the file
(e.g. reading or writing) will raise an exception.

	
name()

	Returns the name of the file the object represents. This will be the
same as the filename argument passed into the call to the open
function that instantiated the object.

	
read(size)

	Read and return at most size characters as a single string or
size bytes from the file. As a convenience, if size is
unspecified or -1, all the data contained in the file is returned.
Fewer than size characters or bytes may be returned if there are
less than size characters or bytes remaining to be read from
the file.

If 0 characters or bytes are returned, and size was not 0, this
indicates end of file.

A MemoryError exception will occur if size is larger than the
available RAM.

	
readinto(buf, n=-1)

	Read characters or bytes into the buffer buf. If n is supplied,
read n number of bytes or characters into the buffer buf.

	
readline(size)

	Read and return one line from the file. If size is specified, at
most size characters will be read.

The line terminator is always '\n' for strings or b'\n' for
bytes.

	
writable()

	Return True if the file supports writing. If False, write()
will raise OSError.

	
write(buf)

	Write the string or bytes buf to the file and return the number of
characters or bytes written.

 I²C

I²C

The i2c module lets you communicate with devices connected to your board
using the I²C bus protocol. There can be multiple slave devices connected at
the same time, and each one has its own unique address, that is either fixed
for the device or configured on it. Your board acts as the I²C master.

We use 7-bit addressing for devices because of the reasons stated
here [http://www.totalphase.com/support/articles/200349176-7-bit-8-bit-and-10-bit-I2C-Slave-Addressing].

This may be different to other micro:bit related solutions.

How exactly you should communicate with the devices, that is, what bytes to
send and how to interpret the responses, depends on the device in question and
should be described separately in that device’s documentation.

Functions

	
microbit.i2c.init(freq=100000, sda=pin20, scl=pin19)

	Re-initialize peripheral with the specified clock frequency freq on the
specified sda and scl pins.

警告

Changing the I²C pins from defaults will make the accelerometer and
compass stop working, as they are connected internally to those pins.

	
microbit.i2c.read(addr, n, repeat=False)

	Read n bytes from the device with 7-bit address addr. If repeat
is True, no stop bit will be sent.

	
microbit.i2c.write(addr, buf, repeat=False)

	Write bytes from buf to the device with 7-bit address addr. If
repeat is True, no stop bit will be sent.

Connecting

You should connect the device’s SCL pin to micro:bit pin 19, and the
device’s SDA pin to micro:bit pin 20. You also must connect the device’s
ground to the micro:bit ground (pin GND). You may need to power the device
using an external power supply or the micro:bit.

There are internal pull-up resistors on the I²C lines of the board, but with
particularly long wires or large number of devices you may need to add
additional pull-up resistors, to ensure noise-free communication.

 Image

Image

The Image class is used to create images that can be displayed easily on
the device’s LED matrix. Given an image object it’s possible to display it via
the display API:

display.show(Image.HAPPY)

[image: image-smile.png]

Classes

	
class microbit.Image(string)

	
class microbit.Image(width=None, height=None, buffer=None)

	If string is used, it has to consist of digits 0-9 arranged into
lines, describing the image, for example:

image = Image("90009:"
 "09090:"
 "00900:"
 "09090:"
 "90009")

will create a 5×5 image of an X. The end of a line is indicated by a colon.
It’s also possible to use a newline (n) to indicate the end of a line
like this:

image = Image("90009\n"
 "09090\n"
 "00900\n"
 "09090\n"
 "90009")

The other form creates an empty image with width columns and
height rows. Optionally buffer can be an array of
width``×``height integers in range 0-9 to initialize the image.

	
width()

	Return the number of columns in the image.

	
height()

	Return the numbers of rows in the image.

	
set_pixel(x, y, value)

	Set the brightness of the pixel at column x and row y to the
value, which has to be between 0 (dark) and 9 (bright).

This method will raise an exception when called on any of the built-in
read-only images, like Image.HEART.

	
get_pixel(x, y)

	Return the brightness of pixel at column x and row y as an
integer between 0 and 9.

	
shift_left(n)

	Return a new image created by shifting the picture left by n
columns.

	
shift_right(n)

	Same as image.shift_left(-n).

	
shift_up(n)

	Return a new image created by shifting the picture up by n rows.

	
shift_down(n)

	Same as image.shift_up(-n).

	
crop(x, y, w, h)

	Return a new image by cropping the picture to a width of w and a
height of h, starting with the pixel at column x and row y.

	
copy()

	Return an exact copy of the image.

	
invert()

	Return a new image by inverting the brightness of the pixels in the
source image.

	
fill(value)

	Set the brightness of all the pixels in the image to the
value, which has to be between 0 (dark) and 9 (bright).

This method will raise an exception when called on any of the built-in
read-only images, like Image.HEART.

	
blit(src, x, y, w, h, xdest=0, ydest=0)

	Copy the rectangle defined by x, y, w, h from the image src into
this image at xdest, ydest.
Areas in the source rectangle, but outside the source image are treated as having a value of 0.

shift_left(), shift_right(), shift_up(), shift_down() and crop()
can are all implemented by using blit().
For example, img.crop(x, y, w, h) can be implemented as:

def crop(self, x, y, w, h):
 res = Image(w, h)
 res.blit(self, x, y, w, h)
 return res

Attributes

The Image class also has the following built-in instances of itself
included as its attributes (the attribute names indicate what the image
represents):

	Image.HEART

	Image.HEART_SMALL

	Image.HAPPY

	Image.SMILE

	Image.SAD

	Image.CONFUSED

	Image.ANGRY

	Image.ASLEEP

	Image.SURPRISED

	Image.SILLY

	Image.FABULOUS

	Image.MEH

	Image.YES

	Image.NO

	Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5,
Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

	Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E,
Image.ARROW_SE, Image.ARROW_S, Image.ARROW_SW,
Image.ARROW_W, Image.ARROW_NW

	Image.TRIANGLE

	Image.TRIANGLE_LEFT

	Image.CHESSBOARD

	Image.DIAMOND

	Image.DIAMOND_SMALL

	Image.SQUARE

	Image.SQUARE_SMALL

	Image.RABBIT

	Image.COW

	Image.MUSIC_CROTCHET

	Image.MUSIC_QUAVER

	Image.MUSIC_QUAVERS

	Image.PITCHFORK

	Image.XMAS

	Image.PACMAN

	Image.TARGET

	Image.TSHIRT

	Image.ROLLERSKATE

	Image.DUCK

	Image.HOUSE

	Image.TORTOISE

	Image.BUTTERFLY

	Image.STICKFIGURE

	Image.GHOST

	Image.SWORD

	Image.GIRAFFE

	Image.SKULL

	Image.UMBRELLA

	Image.SNAKE

Finally, related collections of images have been grouped together:

* ``Image.ALL_CLOCKS``
* ``Image.ALL_ARROWS``

Operations

repr(image)

Get a compact string representation of the image.

str(image)

Get a readable string representation of the image.

image1 + image2

Create a new image by adding the brightness values from the two images for
each pixel.

image * n

Create a new image by multiplying the brightness of each pixel by n.

 Music

Music

This is the music module. You can use it to play simple tunes, provided
that you connect a speaker to your board. By default the music module
expects the speaker to be connected via pin 0:

[image: music-pins.png]
This arrangement can be overridden (as discussed below).

To access this module you need to:

import music

We assume you have done this for the examples below.

Musical Notation

An individual note is specified thus:

NOTE[octave][:duration]

For example, A1:4 refers to the note “A” in octave 1 that lasts for four
ticks (a tick is an arbitrary length of time defined by a tempo setting
function - see below). If the note name R is used then it is treated as a
rest (silence).

Accidentals (flats and sharps) are denoted by the b (flat - a lower case b)
and # (sharp - a hash symbol). For example, Ab is A-flat and C# is
C-sharp.

Note names are case-insensitive.

The octave and duration parameters are states that carry over to
subsequent notes until re-specified. The default states are octave = 4
(containing middle C) and duration = 4 (a crotchet, given the default tempo
settings - see below).

For example, if 4 ticks is a crotchet, the following list is crotchet, quaver,
quaver, crotchet based arpeggio:

['c1:4', 'e:2', 'g', 'c2:4']

The opening of Beethoven’s 5th Symphony would be encoded thus:

['r4:2', 'g', 'g', 'g', 'eb:8', 'r:2', 'f', 'f', 'f', 'd:8']

The definition and scope of an octave conforms to the table listed on this
page about scientific pitch notation [https://en.wikipedia.org/wiki/Scientific_pitch_notation#Table_of_note_frequencies]. For example, middle “C” is 'c4' and
concert “A” (440) is 'a4'. Octaves start on the note “C”.

Functions

	
music.set_tempo(ticks=4, bpm=120)

	Sets the approximate tempo for playback.

A number of ticks (expressed as an integer) constitute a beat. Each beat is to be played at a certain frequency per minute (expressed as the more familiar BPM - beats per minute - also as an integer).

Suggested default values allow the following useful behaviour:

	music.set_tempo() - reset the tempo to default of ticks = 4, bpm = 120

	music.set_tempo(ticks=8) - change the “definition” of a beat

	music.set_tempo(bpm=180) - just change the tempo

To work out the length of a tick in milliseconds is very simple arithmetic: 60000/bpm/ticks_per_beat . For the default values that’s 60000/120/4 = 125 milliseconds or 1 beat = 500 milliseconds.

	
music.get_tempo()

	Gets the current tempo as a tuple of integers: (ticks, bpm).

	
music.play(music, pin=microbit.pin0, wait=True, loop=False)

	Plays music containing the musical DSL defined above.

If music is a string it is expected to be a single note such as,
'c1:4'.

If music is specified as a list of notes (as defined in the section on
the musical DSL, above) then they are played one after the other to perform
a melody.

In both cases, the duration and octave values are reset to
their defaults before the music (whatever it may be) is played.

An optional argument to specify the output pin can be used to override the
default of microbit.pin0.

If wait is set to True, this function is blocking.

If loop is set to True, the tune repeats until stop is called
(see below) or the blocking call is interrupted.

	
music.pitch(frequency, len=-1, pin=microbit.pin0, wait=True)

	Plays a pitch at the integer frequency given for the specified number of
milliseconds. For example, if the frequency is set to 440 and the length to
1000 then we hear a standard concert A for one second.

If wait is set to True, this function is blocking.

If len is negative the pitch is played continuously until either the
blocking call is interrupted or, in the case of a background call, a new
frequency is set or stop is called (see below).

	
music.stop(pin=microbit.pin0)

	Stops all music playback on a given pin.

	
music.reset()

	Resets the state of the following attributes in the following way:

	ticks = 4

	bpm = 120

	duration = 4

	octave = 4

Built in Melodies

For the purposes of education and entertainment, the module contains several
example tunes that are expressed as Python lists. They can be used like this:

>>> import music
>>> music.play(music.NYAN)

All the tunes are either out of copyright, composed by Nicholas H.Tollervey and
released to the public domain or have an unknown composer and are covered by a
fair (educational) use provision.

They are:

	DADADADUM - the opening to Beethoven’s 5th Symphony in C minor.

	ENTERTAINER - the opening fragment of Scott Joplin’s Ragtime classic “The Entertainer”.

	PRELUDE - the opening of the first Prelude in C Major of J.S.Bach’s 48 Preludes and Fugues.

	ODE - the “Ode to Joy” theme from Beethoven’s 9th Symphony in D minor.

	NYAN - the Nyan Cat theme (http://www.nyan.cat/). The composer is unknown. This is fair use for educational porpoises (as they say in New York).

	RINGTONE - something that sounds like a mobile phone ringtone. To be used to indicate an incoming message.

	FUNK - a funky bass line for secret agents and criminal masterminds.

	BLUES - a boogie-woogie 12-bar blues walking bass.

	BIRTHDAY - “Happy Birthday to You...” for copyright status see: http://www.bbc.co.uk/news/world-us-canada-34332853

	WEDDING - the bridal chorus from Wagner’s opera “Lohengrin”.

	FUNERAL - the “funeral march” otherwise known as Frédéric Chopin’s Piano Sonata No. 2 in B♭ minor, Op. 35.

	PUNCHLINE - a fun fragment that signifies a joke has been made.

	PYTHON - John Philip Sousa’s march “Liberty Bell” aka, the theme for “Monty Python’s Flying Circus” (after which the Python programming language is named).

	BADDY - silent movie era entrance of a baddy.

	CHASE - silent movie era chase scene.

	BA_DING - a short signal to indicate something has happened.

	WAWAWAWAA - a very sad trombone.

	JUMP_UP - for use in a game, indicating upward movement.

	JUMP_DOWN - for use in a game, indicating downward movement.

	POWER_UP - a fanfare to indicate an achievement unlocked.

	POWER_DOWN - a sad fanfare to indicate an achievement lost.

Example

 NeoPixel

NeoPixel

The neopixel module lets you use Neopixel (WS2812) individually addressable
RGB LED strips with the Microbit. Note to use the neopixel module, you
need to import it separately with:

import neopixel

注解

From our tests, the Microbit Neopixel module can drive up to around 256
Neopixels. Anything above that and you may experience weird bugs and
issues.

NeoPixels are fun strips of multi-coloured programmable LEDs. This module
contains everything to plug them into a micro:bit and create funky displays,
art and games such as the demo shown below.

[image: _images/neopixel.gif]
To connect a strip of neopixels you’ll need to attach the micro:bit as shown
below (assuming you want to drive the pixels from pin 0 - you can connect
neopixels to pins 1 and 2 too). The label on the crocodile clip tells you where
to attach the other end on the neopixel strip.

警告

Do not use the 3v connector on the Microbit to power any more than 8
Neopixels at a time.

If you wish to use more than 8 Neopixels, you must use a separate 3v-5v
power supply for the Neopixel power pin.

[image: neopixel-croc.png]

Classes

	
class neopixel.NeoPixel(pin, n)

	Initialise a new strip of n number of neopixel LEDs controlled via pin
pin. Each pixel is addressed by a position (starting from 0). Neopixels
are given RGB (red, green, blue) values between 0-255 as a tuple. For
example, (255,255,255) is white.

	
clear()

	Clear all the pixels.

	
show()

	Show the pixels. Must be called for any updates to become visible.

Operations

Writing the colour doesn’t update the display (use show() for that).

np[0] = (255, 0, 128) # first element
np[-1] = (0, 255, 0) # last element
np.show() # only now will the updated value be shown

To read the colour of a specific pixel just reference it.

print(np[0])

Using Neopixels

Interact with Neopixels as if they were a list of tuples. Each tuple represents
the RGB (red, green and blue) mix of colours for a specific pixel. The RGB
values can range between 0 to 255.

For example, initialise a strip of 8 neopixels on a strip connected to pin0
like this:

import neopixel
np = neopixel.NeoPixel(pin0, 8)

Set pixels by indexing them (like with a Python list). For instance, to
set the first pixel to full brightness red, you would use:

np[0] = (255, 0, 0)

Or the final pixel to purple:

np[-1] = (255, 0, 255)

Get the current colour value of a pixel by indexing it. For example, to print
the first pixel’s RGB value use:

print(np[0])

Finally, to push the new colour data to your Neopixel strip, use the .show()
function:

np.show()

If nothing is happening, it’s probably because you’ve forgotten this final
step..!

注解

If you’re not seeing anything change on your Neopixel strip, make sure
you’re show() at least somewhere otherwise your updates won’t be
shown.

Example

 The os Module

The os Module

MicroPython contains an os module based upon the os module in the
Python standard library. It’s used for accessing what would traditionally be
termed as operating system dependent functionality. Since there is no operating
system in MicroPython the module provides functions relating to the management
of the simple on-device persistent file system and information about the
current system.

To access this module you need to:

import os

We assume you have done this for the examples below.

Functions

	
os.listdir()

	Returns a list of the names of all the files contained within the local
persistent on-device file system.

	
os.remove(filename)

	Removes (deletes) the file named in the argument filename. If the file
does not exist an OSError exception will occur.

	
os.size(filename)

	Returns the size, in bytes, of the file named in the argument filename.
If the file does not exist an OSError exception will occur.

	
os.uname()

	Returns information identifying the current operating system. The return
value is an object with five attributes:

	sysname - operating system name

	nodename - name of machine on network (implementation-defined)

	release - operating system release

	version - operating system version

	machine - hardware identifier

注解

There is no underlying operating system in MicroPython. As a result the
information returned by the uname function is mostly useful for
versioning details.

 Input/Output Pins

Input/Output Pins

The pins are your board’s way to communicate with external devices connected to
it. There are 19 pins for your disposal, numbered 0-16 and 19-20. Pins 17 and
18 are not available.

For example, the script below will change the display on the micro:bit
depending upon the digital reading on pin 0:

from microbit import *

while True:
 if pin0.read_digital():
 display.show(Image.HAPPY)
 else:
 display.show(Image.SAD)

Pin Functions

[image: _images/pinout.png]
Those pins are available as attributes on the microbit
module:microbit.pin0 - microbit.pin20.

	Pin
	Type
	Function

	0
	Touch
	Pad 0

	1
	Touch
	Pad 1

	2
	Touch
	Pad 2

	3
	Analog
	Column 1

	4
	Analog
	Column 2

	5
	Digital
	Button A

	6
	Digital
	Row 2

	7
	Digital
	Row 1

	8
	Digital
	

	9
	Digital
	Row 3

	10
	Analog
	Column 3

	11
	Digital
	Button B

	12
	Digital
	

	13
	Digital
	SPI MOSI

	14
	Digital
	SPI MISO

	15
	Digital
	SPI SCK

	16
	Digital
	

	
	
	

	19
	Digital
	I2C SCL

	20
	Digital
	I2C SDA

The above table summarizes the pins available, their types (see below) and what
they are internally connected to.

Pulse-Width Modulation

The pins of your board cannot output analog signal the way an audio amplifier
can do it – by modulating the voltage on the pin. Those pins can only either
enable the full 3.3V output, or pull it down to 0V. However, it is still
possible to control the brightness of LEDs or speed of an electric motor, by
switching that voltage on and off very fast, and controlling how long it is on
and how long it is off. This technique is called Pulse-Width Modulation (PWM),
and that’s what the write_analog method below does.

[image: _images/pwm.png]
Above you can see the diagrams of three different PWM signals. All of them have
the same period (and thus frequency), but they have different duty cycles.

The first one would be generated by write_analog(511), as it has exactly
50% duty – the power is on half of the time, and off half of the time. The
result of that is that the total energy of this signal is the same, as if it
was 1.65V instead of 3.3V.

The second signal has 25% duty cycle, and could be generated with
write_analog(255). It has similar effect as if 0.825V was being output on
that pin.

The third signal has 75% duty cycle, and can be generated with
write_analog(767). It has three times as much energy, as the second signal,
and is equivalent to outputting 2.475V on th pin.

Note that this works well with devices such as motors, which have huge inertia
by themselves, or LEDs, which blink too fast for the human eye to see the
difference, but will not work so good with generating sound waves. This board
can only generate square wave sounds on itself, which sound pretty much like
the very old computer games – mostly because those games also only could do
that.

Classes

There are three kinds of pins, differing in what is available for them. They
are represented by the classes listed below. Note that they form a hierarchy,
so that each class has all the functionality of the previous class, and adds
its own to that.

注解

Those classes are not actually available for the user, you can’t create
new instances of them. You can only use the instances already provided,
representing the physical pins on your board.

	
class microbit.MicroBitDigitalPin

	
	
read_digital()

	Return 1 if the pin is high, and 0 if it’s low.

	
write_digital(value)

	Set the pin to high if value is 1, or to low, if it is 0.

	
class microbit.MicroBitAnalogDigitalPin

	
	
read_analog()

	Read the voltage applied to the pin, and return it as an integer
between 0 (meaning 0V) and 1023 (meaning 3.3V).

	
write_analog(value)

	Output a PWM signal on the pin, with the duty cycle proportional to
the provided value. The value may be either an integer or a
floating point number between 0 (0% duty cycle) and 1023 (100% duty).

	
set_analog_period(period)

	Set the period of the PWM signal being output to period in
milliseconds. The minimum valid value is 1ms.

	
set_analog_period_microseconds(period)

	Set the period of the PWM signal being output to period in
microseconds. The minimum valid value is 35µs.

	
class microbit.MicroBitTouchPin

	
	
is_touched()

	Return True if the pin is being touched with a finger, otherwise
return False.

This test is done by measuring the capacitance of the pin together with
whatever is connected to it. Human body has quite a large capacitance,
so touching the pin gives a dramatic change in reading, which can be
detected.

The pull mode for a pin is automatically configured when the pin changes to an
input mode. Input modes are when you call read_analog / read_digital /
is_touched. The pull mode for these is, respectively, NO_PULL,
PULL_DOWN, PULL_UP. Only when in read_digital mode can you call
set_pull to change the pull mode from the default.

注解

Also note, the micro:bit has external weak (10M) pull-ups fitted on pins
0, 1 and 2 only, in order for the touch sensing to work. See the edge
connector data sheet here:
http://tech.microbit.org/hardware/edgeconnector_ds/

 Radio

Radio

The radio module allows devices to work together via simple wireless
networks.

The radio module is conceptually very simple:

	Broadcast messages are of a certain configurable length (up to 251 bytes).

	Messages received are read from a queue of configurable size (the larger the queue the more RAM is used). If the queue is full, new messages are ignored.

	Messages are broadcast and received on a preselected channel (numbered 0-100).

	Broadcasts are at a certain level of power - more power means more range.

	Messages are filtered by address (like a house number) and group (like a named recipient at the specified address).

	The rate of throughput can be one of three pre-determined settings.

	Send and receieve bytes to work with arbitrary data.

	As a convenience for children, it’s easy to send and receive messages as strings.

	The default configuration is both sensible and compatible with other platforms that target the BBC micro:bit.

To access this module you need to:

import radio

We assume you have done this for the examples below.

Constants

	
radio.RATE_250KBIT

	Constant used to indicate a throughput of 256 Kbit a second.

	
radio.RATE_1MBIT

	Constant used to indicate a throughput of 1 MBit a second.

	
radio.RATE_2MBIT

	Constant used to indicate a throughput of 2 MBit a second.

Functions

	
radio.on()

	Turns the radio on. This needs to be explicitly called since the radio
draws power and takes up memory that you may otherwise need.

	
radio.off()

	Turns off the radio, thus saving power and memory.

	
radio.config(**kwargs)

	Configures various keyword based settings relating to the radio. The
available settings and their sensible default values are listed below.

The length (default=32) defines the maximum length, in bytes, of a
message sent via the radio. It can be up to 251 bytes long (254 - 3 bytes
for S0, LENGTH and S1 preamble).

The queue (default=3) specifies the number of messages that can be
stored on the incoming message queue. If there are no spaces left on the
queue for incoming messages, then the incoming message is dropped.

The channel (default=7) can be an integer value from 0 to 100
(inclusive) that defines an arbitrary “channel” to which the radio is
tuned. Messages will be sent via this channel and only messages received
via this channel will be put onto the incoming message queue. Each step is
1MHz wide, based at 2400MHz.

The power (default=6) is an integer value from 0 to 7 (inclusive) to
indicate the strength of signal used when broadcasting a message. The
higher the value the stronger the signal, but the more power is consumed
by the device. The numbering translates to positions in the following list
of dBm (decibel milliwatt) values: -30, -20, -16, -12, -8, -4, 0, 4.

The address (default=0x75626974) is an arbitrary name, expressed as a
32-bit address, that’s used to filter incoming packets at the hardware
level, keeping only those that match the address you set. The default used
by other micro:bit related platforms is the default setting used here.

The group (default=0) is an 8-bit value (0-255) used with the
address when filtering messages. Conceptually, “address” is like a
house/office address and “group” is like the person at that address to
which you want to send your message.

The data_rate (default=radio.RATE_1MBIT) indicates the speed at which
data throughput takes place. Can be one of the following contants defined
in the radio module : RATE_250KBIT, RATE_1MBIT or
RATE_2MBIT.

If config is not called then the defaults described above are assumed.

	
radio.reset()

	Reset the settings to their default values (as listed in the documentation
for the config function above).

注解

None of the following send or receive methods will work until the radio is
turned on.

	
radio.send_bytes(message)

	Sends a message containing bytes.

	
radio.receive_bytes()

	Receive the next incoming message on the message queue. Returns None if
there are no pending messages. Messages are returned as bytes.

	
radio.receive_bytes_into(buffer)

	Receive the next incoming message on the message queue. Copies the message
into buffer, trimming the end of the message if necessary.
Returns None if there are no pending messages, otherwise it returns the length
of the message (which might be more than the length of the buffer).

	
radio.send(message)

	Sends a message string. This is the equivalent of
send_bytes(bytes(message, 'utf8')) but with b'\x01\x00\x01'
prepended to the front (to make it compatible with other platforms that
target the micro:bit).

	
radio.receive()

	Works in exactly the same way as receive_bytes but returns
whatever was sent.

Currently, it’s equivalent to str(receive_bytes(), 'utf8') but with a
check that the the first three bytes are b'\x01\x00\x01' (to make it
compatible with other platforms that may target the micro:bit). It strips
the prepended bytes before converting to a string.

A ValueError exception is raised if conversion to string fails.

Examples

 Random Number Generation

Random Number Generation

This module is based upon the random module in the Python standard library.
It contains functions for generating random behaviour.

To access this module you need to:

import random

We assume you have done this for the examples below.

Functions

	
random.getrandbits(n)

	Returns an integer with n random bits.

警告

Because the underlying generator function returns at most 30 bits, n
may only be a value between 1-30 (inclusive).

	
random.seed(n)

	Initialize the random number generator with a known integer n. This
will give you reproducibly deterministic randomness from a given starting
state (n).

	
random.randint(a, b)

	Return a random integer N such that a <= N <= b. Alias for
randrange(a, b+1).

	
random.randrange(stop)

	Return a randomly selected integer between zero and up to (but not
including) stop.

	
random.randrange(start, stop)

	Return a randomly selected integer from range(start, stop).

	
random.randrange(start, stop, step)

	Return a randomly selected element from range(start, stop, step).

	
random.choice(seq)

	Return a random element from the non-empty sequence seq. If seq is
empty, raises IndexError.

	
random.random()

	Return the next random floating point number in the range [0.0, 1.0)

	
random.uniform(a, b)

	Return a random floating point number N such that a <= N <= b
for a <= b and b <= N <= a for b < a.

 Speech

Speech

警告

WARNING! THIS IS ALPHA CODE.

We reserve the right to change this API as development continues.

The quality of the speech is not great, merely “good enough”. Given the
constraints of the device you may encounter memory errors and / or
unexpected extra sounds during playback. It’s early days and we’re
improving the code for the speech synthesiser all the time. Bug reports
and pull requests are most welcome.

This module makes microbit talk, sing and make other speech like sounds
provided that you connect a speaker to your board as shown below:

[image: speech.png]

注解

This work is based upon the amazing reverse engineering efforts of
Sebastian Macke based upon an old text-to-speech (TTS) program called SAM
(Software Automated Mouth) originally released in 1982 for the
Commodore 64. The result is a small C library that we have adopted and
adapted for the micro:bit. You can find out more from
his homepage [http://simulationcorner.net/index.php?page=sam]. Much of
the information in this document was gleaned from the original user’s
manual which can be found
here [http://www.apple-iigs.info/newdoc/sam.pdf].

The speech synthesiser can produce around 2.5 seconds worth of sound from up to
255 characters of textual input.

To access this module you need to:

import speech

We assume you have done this for the examples below.

Functions

	
speech.translate(words)

	Given English words in the string words, return a string containing
a best guess at the appropriate phonemes to pronounce. The output is
generated from this
text to phoneme translation table [https://github.com/s-macke/SAM/wiki/Text-to-phoneme-translation-table].

This function should be used to generate a first approximation of phonemes
that can be further hand-edited to improve accuracy, inflection and
emphasis.

	
speech.pronounce(phonemes, *, pitch=64, speed=72, mouth=128, throat=128)

	Pronounce the phonemes in the string phonemes. See below for details of
how to use phonemes to finely control the output of the speech synthesiser.
Override the optional pitch, speed, mouth and throat settings to change the
timbre (quality) of the voice.

	
speech.say(words, *, pitch=64, speed=72, mouth=128, throat=128)

	Say the English words in the string words. The result is semi-accurate
for English. Override the optional pitch, speed, mouth and throat
settings to change the timbre (quality) of the voice. This is a short-hand
equivalent of: speech.pronounce(speech.translate(words))

	
speech.sing(phonemes, *, pitch=64, speed=72, mouth=128, throat=128)

	Sing the phonemes contained in the string phonemes. Changing the pitch
and duration of the note is described below. Override the optional pitch,
speed, mouth and throat settings to change the timbre (quality) of the
voice.

Punctuation

Punctuation is used to alter the delivery of speech. The synthesiser
understands four punctuation marks: hyphen, comma, full-stop and question mark.

The hyphen (-) marks clause boundaries by inserting a short pause in the
speech.

The comma (,) marks phrase boundaries and inserts a pause of approximately
double that of the hyphen.

The full-stop (.) and question mark (?) end sentences.

The full-stop inserts a pause and causes the pitch to fall.

The question mark also inserts a pause but causes the pitch to rise. This works
well with yes/no questions such as, “are we home yet?” rather than more complex
questions such as “why are we going home?”. In the latter case, use a
full-stop.

Timbre

The timbre of a sound is the quality of the sound. It’s the difference between
the voice of a DALEK and the voice of a human (for example). To control the
timbre change the numeric settings of the pitch, speed, mouth and
throat arguments.

The pitch (how high or low the voice sounds) and speed (how quickly the speech
is delivered) settings are rather obvious and generally fall into the following
categories:

Pitch:

	0-20 impractical

	20-30 very high

	30-40 high

	40-50 high normal

	50-70 normal

	70-80 low normal

	80-90 low

	90-255 very low

(The default is 64)

Speed:

	0-20 impractical

	20-40 very fast

	40-60 fast

	60-70 fast conversational

	70-75 normal conversational

	75-90 narrative

	90-100 slow

	100-225 very slow

(The default is 72)

The mouth and throat values are a little harder to explain and the following
descriptions are based upon our aural impressions of speech produced as the
value of each setting is changed.

For mouth, the lower the number the more it sounds like the speaker is talking
without moving their lips. In contrast, higher numbers (up to 255) make it
sound like the speech is enunciated with exagerated mouth movement.

For throat, the lower the number the more relaxed the speaker sounds. In
contrast, the higher the number, the more tense the tone of voice becomes.

The important thing is to experiment and adjust the settings until you get the
effect you desire.

To get you started here are some examples:

speech.say("I am a little robot", speed=92, pitch=60, throat=190, mouth=190)
speech.say("I am an elf", speed=72, pitch=64, throat=110, mouth=160)
speech.say("I am a news presenter", speed=82, pitch=72, throat=110, mouth=105)
speech.say("I am an old lady", speed=82, pitch=32, throat=145, mouth=145)
speech.say("I am E.T.", speed=100, pitch=64, throat=150, mouth=200)
speech.say("I am a DALEK - EXTERMINATE", speed=120, pitch=100, throat=100, mouth=200)

Phonemes

The say function makes it easy to produce speech - but often it’s not
accurate. To make sure the speech synthesiser pronounces things
exactly how you’d like, you need to use phonemes: the smallest
perceptually distinct units of sound that can be used to distinguish different
words. Essentially, they are the building-block sounds of speech.

The pronounce function takes a string containing a simplified and readable
version of the International Phonetic Alphabet [https://en.wikipedia.org/wiki/International_Phonetic_Alphabet] and optional annotations to indicate
inflection and emphasis.

The advantage of using phonemes is that you don’t have to know how to spell!
Rather, you only have to know how to say the word in order to spell it
phonetically.

The table below lists the phonemes understood by the synthesiser.

注解

The table contains the phoneme as characters, and an example word. The
example words have the sound of the phoneme (in parenthesis), but not
necessarily the same letters.

Often overlooked: the symbol for the “H” sound is /H. A glottal stop
is a forced stoppage of sound.

SIMPLE VOWELS VOICED CONSONANTS
IY f(ee)t R (r)ed
IH p(i)n L a(ll)ow
EH b(e)g W a(w)ay
AE S(a)m W (wh)ale
AA p(o)t Y (y)ou
AH b(u)dget M (S)am
AO t(al)k N ma(n)
OH c(o)ne NX so(ng)
UH b(oo)k B (b)ad
UX l(oo)t D (d)og
ER b(ir)d G a(g)ain
AX gall(o)n J (j)u(dg)e
IX dig(i)t Z (z)oo
 ZH plea(s)ure
DIPHTHONGS V se(v)en
EY m(a)de DH (th)en
AY h(igh)
OY b(oy)
AW h(ow) UNVOICED CONSONANTS
OW sl(ow) S (S)am
UW cr(ew) SH fi(sh)
 F (f)ish
 TH (th)in
SPECIAL PHONEMES P (p)oke
UL sett(le) (=AXL) T (t)alk
UM astron(om)y (=AXM) K (c)ake
UN functi(on) (=AXN) CH spee(ch)
Q kitt-en (glottal stop) /H a(h)ead

The following non-standard symbols are also available to the user:

YX diphthong ending (weaker version of Y)
WX diphthong ending (weaker version of W)
RX R after a vowel (smooth version of R)
LX L after a vowel (smooth version of L)
/X H before a non-front vowel or consonant - as in (wh)o
DX T as in pi(t)y (weaker version of T)

Here are some seldom used phoneme combinations (and suggested alternatives):

PHONEME YOU PROBABLY WANT: UNLESS IT SPLITS SYLLABLES LIKE:
COMBINATION
GS GZ e.g. ba(gs) bu(gs)pray
BS BZ e.g. slo(bz) o(bsc)ene
DS DZ e.g. su(ds) Hu(ds)son
PZ PS e.g. sla(ps) -----
TZ TS e.g. cur(ts)y -----
KZ KS e.g. fi(x) -----
NG NXG e.g. singing i(ng)rate
NK NXK e.g. bank Su(nk)ist

If you use anything other than the phonemes described above, a ValueError
exception will be raised. Pass in the phonemes as a string like this:

speech.pronounce("/HEHLOW") # "Hello"

The phonemes are classified into two broad groups: vowels and consonants.

Vowels are further subdivided into simple vowels and diphthongs. Simple vowels
don’t change their sound as you say them whereas diphthongs start with one
sound and end with another. For example, when you say the word “oil” the “oi”
vowel starts with an “oh” sound but changes to an “ee” sound.

Consonants are also subdivided into two groups: voiced and unvoiced. Voiced
consonants require the speaker to use their vocal chords to produce the sound.
For example, consonants like “L”, “N” and “Z” are voiced. Unvoiced consonants
are produced by rushing air, such as “P”, “T” and “SH”.

Once you get used to it, the phoneme system is easy. To begin with some
spellings may seem tricky (for example, “adventure” has a “CH” in it) but the
rule is to write what you say, not what you spell. Experimentation is the best
way to resolve problematic words.

It’s also important that speech sounds natural and understandable. To help
with improving the quality of spoken output it’s often good to use the built-in
stress system to add inflection or emphasis.

There are eight stress markers indicated by the numbers 1 - 8. Simply
insert the required number after the vowel to be stressed. For example, the
lack of expression of “/HEHLOW” is much improved (and friendlier) when
spelled out “/HEH3LOW”.

It’s also possible to change the meaning of words through the way they are
stressed. Consider the phrase “Why should I walk to the store?”. It could be
pronounced in several different ways:

You need a reason to do it.
speech.pronounce("WAY2 SHUH7D AY WAO5K TUX DHAH STOH5R.")
You are reluctant to go.
speech.pronounce("WAY7 SHUH2D AY WAO7K TUX DHAH STOH5R.")
You want someone else to do it.
speech.pronounce("WAY5 SHUH7D AY2 WAO7K TUX DHAH STOHR.")
You'd rather drive.
speech.pronounce("WAY5 SHUHD AY7 WAO2K TUX7 DHAH STOHR.")
You want to walk somewhere else.
speech.pronounce("WAY5 SHUHD AY WAO5K TUX DHAH STOH2OH7R.")

Put simply, different stresses in the speech create a more expressive tone of
voice.

They work by raising or lowering pitch and elongating the associated vowel
sound depending on the number you give:

	very emotional stress

	very emphatic stress

	rather strong stress

	ordinary stress

	tight stress

	neutral (no pitch change) stress

	pitch-dropping stress

	extreme pitch-dropping stress

The smaller the number, the more extreme the emphasis will be. However, such
stress markers will help pronounce difficult words correctly. For example, if
a syllable is not enunciated sufficiently, put in a neutral stress marker.

It’s also possible to elongate words with stress markers:

speech.pronounce("/HEH5EH4EH3EH2EH2EH3EH4EH5EHLP.”)

Singing

It’s possible to make MicroPython sing phonemes.

This is done by annotating a pitch related number onto a phoneme. The lower the
number, the higher the pitch. Numbers roughly translate into musical notes as
shown in the diagram below:

[image: _images/speech-pitch.png]
Annotations work by pre-pending a hash (#) sign and the pitch number in
front of the phoneme. The pitch will remain the same until a new annotation
is given. For example, make MicroPython sing a scale like this:

solfa = [
 "#115DOWWWWWW", # Doh
 "#103REYYYYYY", # Re
 "#94MIYYYYYY", # Mi
 "#88FAOAOAOAOR", # Fa
 "#78SOHWWWWW", # Soh
 "#70LAOAOAOAOR", # La
 "#62TIYYYYYY", # Ti
 "#58DOWWWWWW", # Doh
]
song = ''.join(solfa)
speech.sing(song, speed=100)

In order to sing a note for a certain duration extend the
note by repeating vowel or voiced consonant phonemes (as demonstrated in
the example above). Beware diphthongs - to extend them you need to break them
into their component parts. For example, “OY” can be extended with
“OHOHIYIYIY”.

Experimentation, listening carefully and adjusting is the only sure way to work
out how many times to repeat a phoneme so the note lasts for the desired
duration.

How Does it Work?

The original manual explains it well:

First, instead of recording the actual speech waveform, we only store the
frequency spectrums. By doing this, we save memory and pick up other
advantages. Second, we [...] store some data about timing. These are
numbers pertaining to the duration of each phoneme under different
circumstances, and also some data on transition times so we can know how
to blend a phoneme into its neighbors. Third, we devise a system of rules
to deal with all this data and, much to our amazement, our computer is
babbling in no time.

 SPI

SPI

The spi module lets you talk to a device connected to your board using
a serial peripheral interface (SPI) bus. SPI uses a so-called master-slave
architecture with a single master. You will need to specify the connections
for three signals:

	SCLK : Serial Clock (output from master).

	MOSI : Master Output, Slave Input (output from master).

	MISO : Master Input, Slave Output (output from slave).

Functions

	
microbit.spi.init(baudrate=1000000, bits=8, mode=0, sclk=pin13, mosi=pin15, miso=pin14)

	Initialize SPI communication with the specified parameters on the
specified pins. Note that for correct communication, the parameters
have to be the same on both communicating devices.

The baudrate defines the speed of communication.

The bits defines the size of bytes being transmitted. Currently only
bits=8 is supported. However, this may change in the future.

The mode determines the combination of clock polarity and phase
according to the following convention, with polarity as the high order bit
and phase as the low order bit:

	SPI Mode
	Polarity (CPOL)
	Phase (CPHA)

	0
	0
	0

	1
	0
	1

	2
	1
	0

	3
	1
	1

Polarity (aka CPOL) 0 means that the clock is at logic value 0 when idle
and goes high (logic value 1) when active; polarity 1 means the clock is
at logic value 1 when idle and goes low (logic value 0) when active. Phase
(aka CPHA) 0 means that data is sampled on the leading edge of the clock,
and 1 means on the trailing edge
(viz. https://en.wikipedia.org/wiki/Signal_edge).

The sclk, mosi and miso arguments specify the pins to use for
each type of signal.

	
spi.read(nbytes)

	Read at most nbytes. Returns what was read.

	
spi.write(buffer)

	Write the buffer of bytes to the bus.

	
spi.write_readinto(out, in)

	Write the out buffer to the bus and read any response into the in
buffer. The length of the buffers should be the same. The buffers can be
the same object.

 UART

UART

The uart module lets you talk to a device connected to your board using
a serial interface.

Functions

	
microbit.uart.init(baudrate=9600, bits=8, parity=None, stop=1, *, tx=None, rx=None)

	Initialize serial communication with the specified parameters on the
specified tx and rx pins. Note that for correct communication, the parameters
have to be the same on both communicating devices.

警告

Initializing the UART on external pins will cause the Python console on
USB to become unaccessible, as it uses the same hardware. To bring the
console back you must reinitialize the UART without passing anything for
``tx’’ or ``rx’’ (or passing ``None’’ to these arguments). This means
that calling ``uart.init(115200)’’ is enough to restore the Python console.

The baudrate defines the speed of communication. Common baud
rates include:

	9600

	14400

	19200

	28800

	38400

	57600

	115200

The bits defines the size of bytes being transmitted, and the board
only supports 8. The parity parameter defines how parity is checked,
and it can be None, microbit.uart.ODD or microbit.uart.EVEN.
The stop parameter tells the number of stop bits, and has to be 1 for
this board.

If tx and rx are not specified then the internal USB-UART TX/RX pins
are used which connect to the USB serial convertor on the micro:bit, thus
connecting the UART to your PC. You can specify any other pins you want by
passing the desired pin objects to the tx and rx parameters.

注解

When connecting the device, make sure you “cross” the wires – the TX
pin on your board needs to be connected with the RX pin on the device,
and the RX pin – with the TX pin on the device. Also make sure the
ground pins of both devices are connected.

	
uart.any()

	Return True if any characters waiting, else False.

	
uart.read([nbytes])

	Read characters. If nbytes is specified then read at most that many
bytes.

	
uart.readall()

	Read as much data as possible.

Return value: a bytes object or None on timeout.

	
uart.readinto(buf[, nbytes])

	Read bytes into the buf. If nbytes is specified then read at most
that many bytes. Otherwise, read at most len(buf) bytes.

Return value: number of bytes read and stored into buf or None on
timeout.

	
uart.readline()

	Read a line, ending in a newline character.

Return value: the line read or None on timeout. The newline character is
included in the returned bytes.

	
uart.write(buf)

	Write the buffer of bytes to the bus.

Return value: number of bytes written or None on timeout.

 Installation

Installation

This section will help you set up the tools and programs needed for
developing programs and firmware to flash to the BBC micro:bit using MicroPython.

Dependencies

Development Environment

You will need:

	git

	yotta

Depending on your operating system, the installation instructions vary. Use
the installation scenario that best suits your system.

Yotta will require an ARM mbed account. It will walk you through signing up
if you are not registered.

Installation Scenarios

	Windows

	OS X

	Linux

	Debian and Ubuntu

	Red Hat Fedora/CentOS

	Raspberry Pi

Windows

When installing Yotta [http://yottadocs.mbed.com/], make sure you have these components ticked to install.

	python

	gcc

	cMake

	ninja

	Yotta

	git-scm

	mbed serial driver

OS X

Linux

These steps will cover the basic flavors of Linux and working with the
micro:bit and MicroPython. See also the specific sections for Raspberry Pi,
Debian/Ubuntu, and Red Hat Fedora/Centos.

Debian and Ubuntu

sudo add-apt-repository -y ppa:team-gcc-arm-embedded
sudo add-apt-repository -y ppa:pmiller-opensource/ppa
sudo apt-get update
sudo apt-get install cmake ninja-build gcc-arm-none-eabi srecord libssl-dev
pip3 install yotta

Red Hat Fedora/CentOS

Raspberry Pi

Next steps

Congratulations. You have installed your development environment and are ready to
begin flashing firmware to the micro:bit.

 Flashing Firmware

Flashing Firmware

Building firmware

Use yotta to build.

Use target bbc-microbit-classic-gcc-nosd:

yt target bbc-microbit-classic-gcc-nosd

Run yotta update to fetch remote assets:

yt up

Start the build with either yotta:

yt build

...or use the Makefile:

make all

The result is a microbit-micropython hex file (i.e. microbit-micropython.hex)
found in the build/bbc-microbit-classic-gcc-nosd/source from the root of the
repository.

The Makefile does some extra preprocessing of the source, which is needed only
if you add new interned strings to qstrdefsport.h. The Makefile also puts
the resulting firmware at build/firmware.hex, and includes some convenience
targets.

Preparing firmware and a Python program

tools/makecombined

hexlify

Flashing to the micro:bit

Installation Scenarios

	Windows

	OS X

	Linux

	Debian and Ubuntu

	Red Hat Fedora/CentOS

	Raspberry Pi

 Accessing the REPL

Accessing the REPL

Accessing the REPL on the micro:bit requires:

	Using a serial communication program

	Determining the communication port identifier for the micro:bit

	Establishing communication with the correct settings for your computer

If you are a Windows user you’ll need to install the correct drivers. The
instructions for which are found here:

https://developer.mbed.org/handbook/Windows-serial-configuration

Serial communication

To access the REPL, you need to select a program to use for serial communication.
Some common options are picocom and screen. You will need to install
program and understand the basics of connecting to a device.

Determining port

The micro:bit will have a port identifier (tty, usb) that can be used by the computer for
communicating. Before connecting to the micro:bit, we must determine the port identifier.

Establishing communication with the micro:bit

Depending on your operating system, environment, and serial communication program,
the settings and commands will vary a bit. Here are some common settings for different
systems (please suggest additions that might help others)

Settings

	Windows

	OS X

	Linux

	Debian and Ubuntu

	Red Hat Fedora/CentOS

	Raspberry Pi

 Developer FAQ

Developer FAQ

注解

This project is under active development. Please help other
developers by adding tips, how-tos, and Q&A to this document.
Thanks!

Where do I get a copy of the DAL? A: Ask Nicholas Tollervey for details.

 Contributing

Contributing

Hey! Many thanks for wanting to improve MicroPython on the micro:bit.

Contributions are welcome without prejudice from anyone irrespective of
age, gender, religion, race or sexuality. Good quality code and engagement
with respect, humour and intelligence wins every time.

	If you’re from a background which isn’t well-represented in most geeky groups, get involved - we want to help you make a difference.

	If you’re from a background which is well-represented in most geeky groups, get involved - we want your help making a difference.

	If you’re worried about not being technical enough, get involved - your fresh perspective will be invaluable.

	If you think you’re an imposter, get involved.

	If your day job isn’t code, get involved.

	This isn’t a group of experts, just people. Get involved!

	This is a new community, so, get involved.

We expect contributors to follow the Python Software Foundation’s Code of
Conduct: https://www.python.org/psf/codeofconduct/

Feedback may be given for contributions and, where necessary, changes will
be politely requested and discussed with the originating author. Respectful
yet robust argument is most welcome.

Checklist

	Your code should be commented in plain English (British spelling).

	If your contribution is for a major block of work and you’ve not done so
already, add yourself to the AUTHORS file following the convention found
therein.

	If in doubt, ask a question. The only stupid question is the one that’s never asked.

	Have fun!

 Python 模块索引

 Python 模块索引

 a |
 m |
 n |
 o |
 r |
 s

 		 	

 		
 a	

 	
 	
 audio	

 		 	

 		
 m	

 	[image: -]
 	
 microbit	

 	
 	
 microbit.accelerometer	

 	
 	
 microbit.compass	

 	
 	
 microbit.display	

 	
 	
 microbit.i2c	

 	
 	
 microbit.spi	

 	
 	
 microbit.uart	

 	
 	
 music	

 		 	

 		
 n	

 	
 	
 neopixel	

 		 	

 		
 o	

 	
 	
 os	

 		 	

 		
 r	

 	
 	
 radio	

 	
 	
 random	

 		 	

 		
 s	

 	
 	
 speech	

 索引

索引

 A
 | B
 | C
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	any() (microbit.uart.uart 方法)

 	
 	audio (模块)

 	AudioFrame (audio 中的类)

B

 	
 	blit() (microbit.Image 方法)

 	Button (內置类)

 	
 	button_a

 	button_b

 	BytesIO (內置类)

C

 	
 	calibrate() (在 microbit.compass 模块中)

 	choice() (在 random 模块中)

 	clear() (neopixel.NeoPixel 方法)

 	(在 microbit.display 模块中)

 	clear_calibration() (在 microbit.compass 模块中)

 	
 	close() (TextIO 方法)

 	config() (在 radio 模块中)

 	copy() (microbit.Image 方法)

 	crop() (microbit.Image 方法)

 	current_gesture() (在 microbit.accelerometer 模块中)

F

 	
 	fill() (microbit.Image 方法)

G

 	
 	get_field_strength() (在 microbit.compass 模块中)

 	get_gestures() (在 microbit.accelerometer 模块中)

 	get_pixel() (microbit.Image 方法)

 	(在 microbit.display 模块中)

 	get_presses() (Button 方法)

 	get_tempo() (在 music 模块中)

 	get_values() (在 microbit.accelerometer 模块中)

 	
 	get_x() (在 microbit.accelerometer 模块中)

 	(在 microbit.compass 模块中)

 	get_y() (在 microbit.accelerometer 模块中)

 	(在 microbit.compass 模块中)

 	get_z() (在 microbit.accelerometer 模块中)

 	(在 microbit.compass 模块中)

 	getrandbits() (在 random 模块中)

H

 	
 	heading() (在 microbit.compass 模块中)

 	
 	height() (microbit.Image 方法)

I

 	
 	Image (microbit 中的类)

 	init() (在 microbit.i2c 模块中)

 	(在 microbit.spi 模块中)

 	(在 microbit.uart 模块中)

 	invert() (microbit.Image 方法)

 	
 	is_calibrated() (在 microbit.compass 模块中)

 	is_gesture() (在 microbit.accelerometer 模块中)

 	is_on() (在 microbit.display 模块中)

 	is_pressed() (Button 方法)

 	is_touched() (microbit.MicroBitTouchPin 方法)

L

 	
 	listdir() (在 os 模块中)

M

 	
 	microbit (模块), [1], [2]

 	microbit.accelerometer (模块)

 	microbit.compass (模块)

 	microbit.display (模块)

 	microbit.i2c (模块)

 	
 	microbit.spi (模块)

 	microbit.uart (模块)

 	MicroBitAnalogDigitalPin (microbit 中的类)

 	MicroBitDigitalPin (microbit 中的类)

 	MicroBitTouchPin (microbit 中的类)

 	music (模块)

N

 	
 	name() (TextIO 方法)

 	
 	NeoPixel (neopixel 中的类)

 	neopixel (模块)

O

 	
 	off() (在 microbit.display 模块中)

 	(在 radio 模块中)

 	on() (在 microbit.display 模块中)

 	(在 radio 模块中)

 	
 	open() (內置函数)

 	os (模块)

P

 	
 	panic() (在 microbit 模块中)

 	pitch() (在 music 模块中)

 	
 	play() (在 audio 模块中)

 	(在 music 模块中)

 	pronounce() (在 speech 模块中)

R

 	
 	radio (模块)

 	randint() (在 random 模块中)

 	random (模块)

 	random() (在 random 模块中)

 	randrange() (在 random 模块中), [1], [2]

 	RATE_1MBIT() (在 radio 模块中)

 	RATE_250KBIT() (在 radio 模块中)

 	RATE_2MBIT() (在 radio 模块中)

 	read() (microbit.spi.spi 方法)

 	(TextIO 方法)

 	(microbit.uart.uart 方法)

 	(在 microbit.i2c 模块中)

 	read_analog() (microbit.MicroBitAnalogDigitalPin 方法)

 	
 	read_digital() (microbit.MicroBitDigitalPin 方法)

 	readall() (microbit.uart.uart 方法)

 	readinto() (microbit.uart.uart 方法)

 	(TextIO 方法)

 	readline() (microbit.uart.uart 方法)

 	(TextIO 方法)

 	receive() (在 radio 模块中)

 	receive_bytes() (在 radio 模块中)

 	receive_bytes_into() (在 radio 模块中)

 	remove() (在 os 模块中)

 	reset() (在 microbit 模块中)

 	(在 music 模块中)

 	(在 radio 模块中)

 	running_time() (在 microbit 模块中)

S

 	
 	say() (在 speech 模块中)

 	scroll() (在 microbit.display 模块中)

 	seed() (在 random 模块中)

 	send() (在 radio 模块中)

 	send_bytes() (在 radio 模块中)

 	set_analog_period() (microbit.MicroBitAnalogDigitalPin 方法)

 	set_analog_period_microseconds() (microbit.MicroBitAnalogDigitalPin 方法)

 	set_pixel() (microbit.Image 方法)

 	(在 microbit.display 模块中)

 	set_tempo() (在 music 模块中)

 	
 	shift_down() (microbit.Image 方法)

 	shift_left() (microbit.Image 方法)

 	shift_right() (microbit.Image 方法)

 	shift_up() (microbit.Image 方法)

 	show() (neopixel.NeoPixel 方法)

 	(在 microbit.display 模块中), [1]

 	sing() (在 speech 模块中)

 	size() (在 os 模块中)

 	sleep() (在 microbit 模块中)

 	speech (模块)

 	stop() (在 music 模块中)

T

 	
 	temperature() (在 microbit 模块中)

 	
 	TextIO (內置类)

 	translate() (在 speech 模块中)

U

 	
 	uname() (在 os 模块中)

 	
 	uniform() (在 random 模块中)

W

 	
 	was_gesture() (在 microbit.accelerometer 模块中)

 	was_pressed() (Button 方法)

 	width() (microbit.Image 方法)

 	writable() (TextIO 方法)

 	write() (microbit.spi.spi 方法)

 	(TextIO 方法)

 	(microbit.uart.uart 方法)

 	(在 microbit.i2c 模块中)

 	
 	write_analog() (microbit.MicroBitAnalogDigitalPin 方法)

 	write_digital() (microbit.MicroBitDigitalPin 方法)

 	write_readinto() (microbit.spi.spi 方法)

 MicroPython许可证信息

MicroPython许可证信息

The MIT License (MIT)

Copyright (c) 2013-2015 Damien P. George, and others

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 Audio

Audio

This module allows you play sounds from a speaker attached to the Microbit.
In order to use the audio module you will need to provide a sound source.

A sound source is an iterable (sequence, like list or tuple, or a generator) of
frames, each of 32 samples.
The audio modules plays samples at the rate of 7812.5 samples per second,
which means that it can reproduce frequencies up to 3.9kHz.

Functions

	
audio.play(source, wait=True, pins=(pin0, pin1))

	Play the source to completion.

source is an iterable, each element of which must be an AudioFrame.

If wait is True, this function will block until the source is exhausted.

pins specifies which pins the speaker is connected to.

Classes

	
class audio.AudioFrame

	An AudioFrame object is a list of 32 samples each of which is a signed byte
(whole number between -128 and 127).

It takes just over 4 ms to play a single frame.

Using audio

You will need a sound source, as input to the play function. You can generate your own, like in
examples/waveforms.py or you can use the sound sources provided by modules like synth.

Technical Details

注解

You don’t need to understand this section to use the audio module.
It is just here in case you wanted to know how it works.

The audio module consumes samples at 7812.5 kHz, and uses linear interpolation to
output a PWM signal at 32.5 kHz, which gives tolerable sound quality.

The function play fully copies all data from each AudioFrame before it
calls next() for the next frame, so a sound source can use the same AudioFrame
repeatedly.

The audio module has an internal 64 sample buffer from which it reads samples.
When reading reaches the start or the mid-point of the buffer, it triggers a callback to
fetch the next AudioFrame which is then copied into the buffer.
This means that a sound source has under 4ms to compute the next AudioFrame,
and for reliable operation needs to take less 2ms (which is 32000 cycles, so should be plenty).

Example

 引脚块

引脚块

本教程的目的是初步学习pin开发板的拖拽控件
的使用和基本例程讲解，

TurnipBit 引脚块

	引脚是否被触摸

	读取引脚模拟电压

	设置引脚模拟电压

	读取引脚数字电压

	设置引脚数字输出

 设置引脚模拟电压

设置引脚模拟电压

设置引脚模拟电压的说明

[设置引脚模拟电压拼]的图例

[image: ../../../_images/pin0.write_analog.png]
功能：设置当前引脚输出电压模拟值。

[设置引脚模拟电压拼]的动画

[image: ../../../_images/pin0.write_analog.gif]

 设置引脚数字输出

设置引脚数字输出

设置引脚数字输出的说明

[设置引脚数字输出拼]的图例

[image: ../../../_images/pin0.write_digital.png]
功能：设置当前因引脚输出高低电平。

[设置引脚数字输出拼]的动画

[image: ../../../_images/pin0.write_digital.gif]

 设置引脚数字输出

设置引脚数字输出

设置引脚数字输出的说明

[设置引脚数字输出拼]的图例

[image: ../../../_images/pin0.write_digital.png]
功能：设置当前因引脚输出高低电平。

[设置引脚数字输出拼]的动画

[image: ../../../_images/pin0.write_digital.gif]

 引脚是否被触摸

引脚是否被触摸

引脚是否被触摸的说明

[引脚是否被触摸插]的图例

[image: ../../../_images/pin0.is_touched.png]
功能：判断当前引脚是否被触摸，返回值为真或假。

[引脚是否被触摸插]的动画

[image: ../../../_images/pin0.is_touched.gif]

引脚是否被触摸例程

触摸小夜灯

动手DIY制作一个触摸小夜灯。利用触摸检测的信号控制板子LED灯亮灭，此例程需要配合 设置指定LED亮度拼 [http://docs.turnipbit.com/zh/latest/teach/tutorials/display/display.set_pixel.html] 配合完成。

拼插源码

[image: ../../../_images/pin0.is_toucheds.png]
实例源码:

from microbit import *

A = 0
while True:
 if pin0.is_touched() and display.get_pixel(0, 0) == 0:
 sleep(150)
 if pin0.is_touched():
 display.set_pixel(0, 0, 9)
 if pin0.is_touched() and display.get_pixel(0, 0) == 9:
 sleep(150)
 if pin0.is_touched():
 display.set_pixel(0, 0, 0)

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 pin0.is_toucheds HEX [http://turnipbit.com/download.php?fn=pin0.is_toucheds.hex]

 读取引脚模拟电压

读取引脚模拟电压

读取引脚模拟电压的说明

[读取引脚模拟电压插]的图例

[image: ../../../_images/pin0.read_analog.png]
功能：读取当前引脚电压值，返回值为当前引脚电压的模拟值。

[读取引脚模拟电压插]的动画

[image: ../../../_images/pin0.read_analog.gif]

读取引脚模拟电压例程

智能小夜灯

动手DIY制作一个智能小夜灯。利用外接光敏系统采集当前光照强度，控制板载LED亮度，光照越弱，LED越亮，此例程需要配合 设置指定LED亮度拼 [http://docs.turnipbit.com/zh/latest/teach/tutorials/display/display.set_pixel.html] 配合完成。

拼插源码

[image: ../../../_images/pin0.read_analogs.png]
实例源码:

ifrom microbit import *

A = 0
while True:
 A = (1050 - pin0.read_analog()) / 100
 if A > 9:
 A = 9
 if A < 0:
 A = 0
 display.set_pixel(0, 0, A)

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 pin0.read_analogs HEX [http://turnipbit.com/download.php?fn=pin0.read_analogs.hex]

 读取引脚数字电压

读取引脚数字电压

读取引脚数字电压的说明

[读取引脚数字电压插]的图例

[image: ../../../_images/pin0.read_digital.png]
功能：读取引脚的数字电压，返回值为1或0。

[读取引脚数字电压插]的动画

[image: ../../../_images/pin0.read_digital.gif]

外接按键小乐器

动手DIY制作一个外接按键小乐器。利用外接按键，控制输出相应频率的声音输出，此例程需要配合 播放音调拼 [http://docs.turnipbit.com/zh/latest/teach/tutorials/music/music.pitch.html] 配合完成。

拼插源码

[image: ../../../_images/pin0.read_digitals.png]
实例源码:

from microbit import *
import music

A = 0
while True:
 if pin0.read_digital():
 sleep(100)
 if pin0.read_digital():
 music.pitch(200, 100)
 if pin0.read_digital():
 sleep(100)
 if pin0.read_digital():
 music.pitch(400, 100)
 if pin0.read_digital():
 sleep(100)
 if pin0.read_digital():
 music.pitch(600, 100)
 if pin0.read_digital():
 sleep(100)
 if pin0.read_digital():
 music.pitch(800, 100)

小试牛刀

立即编程 [http://turnipbit.tpyboard.com/]

下载 pin0.read_digitals HEX [http://turnipbit.com/download.php?fn=pin0.read_digitals.hex]

_images/TBJJ11.png
-~

(D)7 » HEL » MICROBIT &) ~ |4 | 2= microsaiT 69 P

s 8~ 0 @

360 se HTML Document (1) CFG i (1) HEXSif (1) SeASzid (1)
MICROBITHTM AUTORST.CFG [dvidhex [DETAILSTXT

= FEES# 1 M (564 K8)

e
&mems) |5
s AR (D)

s AR ()
s AR (F)
‘= MICROBIT (Gi)

_images/music.stop.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/T2.png

_images/reset.png

_images/LAN4.jpg
FERKE ¢ ¥ 3072 "Wl 29%E) 15:06

How to pair your micro:bit

— HOLD RELEASE!
l i ;

b= o

ekt &G

Hold the A and B

buttons, then
PRESS RESET

~

CANCEL X Wl NEXT

O @) d

_images/JS11.png
turnipbit ~
£ PythonBiRE MRS RS
from microbit import

accelerometer.get_x()

s while True:
croll message N
if false:
display.scroll('e")
Seroll message if false:

display.scroll()
display.scroll()

| Berol nessage

F#hex F#&python 2

o

HBHE

1

-
B EE

?

e

EI0)S

_images/button_a.was_presses.png

_images/pin0.is_touched.png

_images/invert.gif
i A 2
a2
HEEEE
&5

BR
TumipBit
i
Tecpixel
sl
Fih
EHR
B

i

#HF

pe3

_images/TBJJ4.png
B o L 2?2 <

turnipbit
WEE EHE KBEf e

£ PythonBiAHHTRE

_images/JS12.png
turnipbit o L ?

£ PythorAE RS WEE (EAE KBLE wm
from microbit import

EI0)S

+

accelerometer.get_x()

- o
=R
=X

while True:
if false:
display.scroll('e')
if false:
display.scroll('1')
display.scroll('-")

test

if true
if false

F#hex F#&python 2

_images/LED6.png
from microbit import *

Microbit

B

[lle, Lokl display.scroll('Hello, World!")

while 3
pass

Tecpixel while -

Pins

FihA 7
EHR
bt

2

_images/TBJJ10.png
B o L 2?2 <

WEE EHE KBEf #E

turnipbit

£ PythonBiAHHTRE

from microbit import *

display.show(Image("79000:09000:00000:00000:00000"))

Show inage () Create inage
-
-

F#hex F#&python

_images/LAN3.jpg
FEKE ¢ ¥ E B 30 2 "Wl 29%E) 15:06

Enter the pattern

o
|

Step 2 —Ooh pretty!
Copy the pattern -
from your

micro:bit onto this @

grid -

O @) <

_images/display.off.png

_images/SY1.png
TurnipBitHIE A]

HMB-HEERHE, BNNETRLESHI—RETRE, ElREL RS, SERATEHEETRNNE. P HEE—
EFNTE, TEERATREMBEAA, TRILBTRMNFRTE, BHREREMNE, EERNAMHPRSHE— “ello
world” , HI{ELSE— FUFHILEDAT -

A Ftpbi t1ETH2, 7 BEILLRH «
2. TPoi tRE2E A RRE S
AMRHIEHTAIE, FRTEH A

T ERET SREOHIRER woi T8 BTALER S Mol oS RO BERE . BIMRET WG, FARAILEEFEER
%, BSHITBIREwoit, RENEE, siEETRMEE.

EFIERIZRT 2B, TRNEATRFE, REET
{ESEYE /BN EEF. Troit ALRMANEFB &

IAFAL CHEEE, KRETECHNFUERTIFECHET - EAAMTLED SR, SHECS—BRE, BEETEH
BIH-EEROTNBEES, SRFNEI, woit EERBEMUBHRTET -

EFH AR 2 LR e

—. tpbit S EmEE

_images/temperature.png

_images/display.clear.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/Image.HEART.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/TBJJ9.png
turnipbit oE L ? <
"E

£ PythonBiRE MRS WEE EHE KBEf e

from microbit import *

Show inage [Create inage

display.show(Image (00000 :00000:00000:00000:00000"))

_images/JS2.png
turnipbit oA

SPythonfiaEiiEE WEE (EAE KBLE wm
from microbit import *

1Y

e while False:
croll nessage display.scroll('1')

display.scroll('9")

Scroll nessage display.scroll('-")

FiRhex F#python Z

_images/TBJJ7.png
turnipbit Mo L 7S
"E

£ PythonBiRE MRS WEE EHE KBEf e

from microbit import *

display.show()

_images/JS4.png
turnipbit o L ?

SPythonfiaEiiEE WEE (EAE KBLE wm
from microbit import *

1Y

while False:
display.scroll('1')
display.scroll('0")
display.scroll('-")

if true
if false

F#hex F#&python

_images/accelerometer.was_gesture.png

_images/EJ3.png
import music

‘DADADADUN music.play(music.DADADADUM, wait= , loop=
Microbit 5

B
Tecpixel
Pins
FihA

EHR

bt

I 2

pe3

_images/scroll-hello1.gif

_images/JS13.png
Microbit

B

Tecpixel

Pins

FihA

EHR

bt

2

pe3

¥ square root

45

even

68

from microbit import

while
if accelerometer.get_x()
display.scroll('e")

if © == accelerometer.get_x():

display.scroll('1")
display.scroll('-")

_images/J1.jpg

_images/EJ1.png

_images/accelerometer.get_gestures.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/PWM1.jpg

_images/display.set_pixelh.png

_images/JS7.png
turnipbit o L ?

£ PythonBiRE MRS WEE EHE KBEf e

MRS MREEEE 1 4 from microbit import *
7 MEREES 1

W &

> while 3
display.scroll('1')
display.scroll()
display.scroll(

T

RS EEE

_images/music.get_tempo1.gif
i A 2

a2

HEEEE

&5

BR

TumipBit

i

Tecpixel

sl

Fih

EHR

B

i

#HF

pe3

_images/display.off.gif
i A 2

a2

HEEEE

&5

BR

TumipBit

i

Tecpixel

sl

Fih

EHR

B

i

#HF

pe3

_images/T4.png
O N [W @@

o C CE g

_images/ZX.png
R L 2 <

turnipbit
WEE fBAR KBLEf e

£ PythonBiAEHTIRE

from microbit import *

while True:
display.scroll()
display.show(Image.HEART)

sleep(2000)

_images/JS1.png
i A 2
a2
HEEEE
o5
BR
Microbit
B
Tecpixel
Pins
FihA

EHR

bt

from microbit import *

display.scroll('1")
display.scroll('e")
display.scroll('-")

_images/compass.get_field_strength.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

vE

_images/music.play1.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/compass.get_field_strength.png

_images/display.is_on.png

_images/pinout.png
O N [W @@

o C CE g

_images/invert.png

_images/accelerometer.current_gesture.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/display.show.png

_images/pin0.is_touched.gif
i A 2

i
RS
"R
7
TumipBit
&
Heapizel
3l
Fig
EHR
=8

[

Fes

pe3

2 Tumip Bit

tpyboard.com

x

™ |4

2017/7/24

_images/L3.png
i A 2

a2

HEEEE

Microbit

B

Tecpixel

Pins

FihA

EHR

bt

from microbit import *

display.set_pixel(x, y, ©)
if b :
display.set_pixel(x, y, 9)

y=y+

ify

_images/pin0.read_analog.png

_images/pin0.write_analog.gif
i A 2

i
RS
"R
7
TumipBit
&
Heapizel
3l
Fig
EHR
=8

[

Fes

pe3

2 Tumip Bit

tpyboard.com

x

= |4

2017/7/24

_images/LAN.jpg
FERKE ¢ ¥ 30 2 "Wl 29%E) 15:07

You have successfully
paired with micro:bit

Please press RESET button and
you're done!

_images/compass.calibrate.png

_images/compass.is_calibrated.png

_images/11.jpg

_images/DUNDONNG2.png
i,

~ Hello, Yorld!

_images/display.scroll.ex01.png
TurnipBit

_images/EJ2.png
turnipbit

iR

Flay built-in nel oy (WG
Yait @@
Locp @

Play notes
Yait @@
Locp @

Set tempo: 1 beat 1s O] ticks at 28

Get current tempo

L]

RS

L

HBHE

1

-—
B EE

?

e

<

_images/compass.get_field_strengths.png
BT R miae
wiF (SnEE (GRS

-

&) R |t
wiF (SnEE (AREE

_images/TBJJ2.png
turnipbit

£ PythonBiAHHTRE

et Y tses

(& 3 o 1oop |

F#hex F#&python

L]

RS

o8

HBHE

1

-—
B EE

e

_images/JS8.png
i A 2
a2
HEEEE
o5
BR
Microbit
B
Tecpixel
Pins
FihA

EHR

bt

microbit

display.scroll('1")
display.scroll('0")
display.scroll('-")

accelerometer.get_x()

_images/display.get_pixel.png

_images/BJLQ.png
i A 2

a2

HEEEE

Microbit

B

Tecpixel

Pins

FihA

EHR

bt

from microbit import *

display.set_pixel(x, y, ©)
if b :
display.set_pixel(x, y, 9)

y=y+

ify

_images/pin0.read_digital.gif
i A 2

i
RS
"R
7
TumipBit
&
Heapizel
3l
Fig
EHR
=8

[

Fes

pe3

2 Tumip Bit

tpyboard.com

x

08 ||

2017/7/24

_images/reset.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/xxy.gif
HEEEE

&5

BR

TumipBit

i

Tecpixel

sl

Fih

EHR

B

i

o Tumip Bit

tpyboard.com

201777717 |

_images/imageDIYS.png
55

300

_images/pin0.read_analog.gif
i A 2

i
RS
"R
7
TumipBit
&
Heapizel
3l
Fig
EHR
=8

[

Fes

pe3

2 Tumip Bit

tpyboard.com

x

3

2017/7/24

_images/TX.png
turnipbit oE L ? <

SPythonfiaEiiEE WEE (EAE KBLE wm
from microbit import *

while True:
display.scroll('Hello, World!')
sleep(1900)

do [Scroll message

Sleep RO nilliseconds
-

F#hex F#&python

_images/speech-pitch1.png
oﬂlo J‘”’f

58 55 52 49

r]

ST ETmr= = e e

11510810398 94 88 82 78 74 70 66 62

c#r i F#' = f
i e i

S die @ |td i

46 44 42 39 37 35 33 31 |29 28 26 25 |23 22 21 20

U

_images/button_a.is_pressed.png

_images/accelerometer.png
IEEEEE X H

IR ¥ H
IEEEEE 1 H

_images/J2.jpg

_images/music.stop.png

_images/display.clear.png

_images/running_time.gif
HEEEE
&5

BR
TumipBit
i
Tecpixel
sl
Fih
EHR
B

i

_images/LE5.png
i A 2
a2
HEEEE
o5
BR
Microbit
B
Tecpixel
Pins
FihA

EHR

bt

Rt T
ixit G WHRT

microbit

display.scroll('*")
display.scroll('+")
display.scroll('Y")

button_a.is_pressed()

button_b.is_pressed()

_images/music.play1.png
HWREHIE

_images/13.jpg

_images/LED10.png
from microbit import *

Microbit

B

while 3

repeat
c Hello, Yorld! display.scroll('Hello, World!")

Tecpixel

Pins

FihA

EHR

bt

2

_images/pin0.read_analogs.png
[:{5
(EFS
Bl

_images/pin0.is_toucheds.png
i i (WD 2!

_images/button_a.get_presses.png

_images/T8.png

_images/neopixel.gif

_images/display.is_on.gif
i A 2

a2

HEEEE

&5

BR

TumipBit

i

Tecpixel

sl

Fih

EHR

B

i

#HF

pe3

_images/LAN2.jpg
FEENE ¢ ¥ B 307 "Wl 29%E) 15:06

Enter the pattern

Step 2

Copy the pattern

from your

micro:bit onto this @
grid -

_static/up.png

_images/scroll-hello.gif

_images/panic.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/LE6.png
Microbit

B

Tecpixel

Pins

FihA

EHR

bt

2

pe3

Rt T
ixit G WHRT

microbit

display.scroll('*")
display.scroll('+")
display.scroll('Y")

button_a.is_pressed()

button_b.is_pressed()

_images/LE7.png
Microbit

B

Tecpixel

Pins

FihA

EHR

2

pe3

microbit

display.scroll('*")
display.scroll('+")
display.scroll('Y")

button_a.is_pressed()

button_b.is_pressed()

_images/B11.png
cP10

SPT

can

12

USART

ADC

HEE10bit

DAC

S¥D

_images/RM1.png
TURNIPBIT (1)

=7 oveam, meovs

_images/LE8.png
turnipbit o L ?

=PythongiEfiiRE WEE (AR KBLE wm
from microbit import *

1Y

while True:
display.scroll()
if button_a.is_pressed():
display.scroll()
if button_b.is_pressed():
display.scroll()

F#hex F#&python

_images/12.jpg

_images/music.pitch.png

_images/CM.png
ik SSCOM3.2 (B EAME(T T), Ehttpy/Jwvow.mcuS1.com, Email: me.. ==

AEERE SHABREEUNS

B
i
i
i
i
i
i
i
i
i
o
i
i
i
i
i
i
i

202 on -

Connend error

@ ximmn

fren

TR | [FFFE R | RFED | FEO | e
=2 | WWW.McU51.COM ki3

115200

RTS

fa|8
1

w0 m

APCETHATIE? gEubl! (EMA]
x HPCBT £S5 e
EHIBAEE FEAS00: 800058315 CRIEHEAK)

EEIT | ARSI 1iFi Gors/GPs [EIESITHER

32 [Nore

B

iR B FHASSCONS. 1247 1 BlFwint0iEAT!

et | None
ww.mcusL.cor[s:27

COM7ESTFF 115200bps [CTS=0 DSR=0 RL

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

_static/file.png

_images/copy.png

_images/button_a.is_pressed1.png
55

_images/JS10.png
Microbit

B

Tecpixel

Pins

FihA

EHR

microbit

display.scroll('1")
display.scroll()
display.scroll('-")

accelerometer.get_x()

_images/display.set_pixel.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/sleep.png

_images/U1.png
il SSCOM3.2 (tFBFANET T), Zhttpy//www.meuS1.com, Ems

Tow zand
You zand
You zand
You zand
You zand
You zand
You zand
You zand
You zand
You zand
You zand
You zand
You zand
You zand
You zand
You zand
You zand

e
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

Tate
ey
ey
ey
ey
ey
ey
ey
ey
ey
ey
ey
ey
ey
ey
ey
ey

TR | [FFFE R | RFED | FEO | e

202 ot

o 12345678 z
tol 123456789

tol 123456789
tol 123456789
tol 123456789
tol 123456789
tol 123456789
tol 123456789
tol 123456789
tol 123456789
tol 123456789
tol 123456789
tol 123456789
tol 123456789
o 123456759
to! 123456789
tol 123456789

@ ximmn =2 | WWW.McU51.COM ki3

g [115200 +

AICETHATIE? SARAR0l (EM]

#gfiz |8

21kfiz |1

57 PCBT -S> 58 P e— FR
B0 800056315 CRIEHA)
AR 1T Goes/GPS CEIERIRIIEA)

Hidiafiz |None.

mpE: [E | | (SREAASIN 126 ifini0iz il

et | None
bww.mcus1.cor[5:189 Re651 COM7ESTFF 115200bps [CTS=0 DSR=0 RL

[izasserss

_images/LAN.png
T - e Lt .‘,_ ;
-! v '...«._..‘.r‘,; A

L '(f !(= I_

o

_images/button_a.get_presses.gif
i A 2

a2

HEEEE

&5

BR

TumipBit

i

Tecpixel

sl

Fih

EHR

B

i

#HF

pe3

_images/accelerometers.png
TEE | AEER

_images/TBJJ5.png
turnipbit

£ PythonBiAHHTRE

oot brignmess ot 1 O] ¥ o]

set pizel at X WD v O to trianness
Clear display

Aninate inages

with a frane delay of @8 ns.
Yait @@
Locp @
Clear @

Scroll nessage Hello, Vorld!

Tum on display

L]

RS

L

HBHE

1

-—
B EE

e

<

_images/T3.png

_static/down-pressed.png

_static/comment-bright.png

_images/LED5.png
turnipbit oE L ? <

WEE EHE KBEf #E

£ PythonBiAHHTRE

ot et Y tses

from microbit import *

display.scroll('Hello, World!')

for each iten EWED in list
do

(-of Loop

F#hex F#&python

_images/display.scroll.ex00.png
Hello, Yorld!

_images/accelerometer.is_gesture.png

_images/LED9.png
from microbit import *

Microbit
B
Hello, Yorld!

Beopixel while - Il true

display.scroll('Hello, World!')
while 3
pass

Pins

FihA 7
EHR
bt

2

_images/display.show.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/LAN6.jpg
FERE ¢ ¥ 0¥ 30 2 "Wl 29%E) 15:05

= D) micro:bit

Connect

Flash

Create Code

Discover

_images/L1.png
i A 2

a2

HEEEE

o5

BR

Microbit

B

Tecpixel

Pins

FihA

EHR

bt

«

t

O ——
0 s

100

Lo | sesimn oY) toled

L 8 || remein (0Y) Wled

_images/JS9.png
Microbit

B

Tecpixel

peat

microbit

display.scroll('1")
display.scroll('0")
display.scroll('-")

accelerometer.get_x()

_images/music.reset.png

_images/ImageDIY.png
AR

_images/BJL.png
i A 2

a2

HEEEE

o5

BR

Microbit

B

Tecpixel

Pins

FihA

EHR

bt

«

t

O ——
0 s

100

Lo | sesimn oY) toled

L 8 || remein (0Y) Wled

_images/CJ.png
MEREBE ———) SHMRITEN microbit
EEEEENE
i

REEE
_ ('x=")
&5 (accelerometer.get_x())
B =)
(accelerometer.get_y())
Microbit Cz=1)
&R (accelerometer.get_z())
Hecpixel
Pins
Fth
AR,
=i

_images/pin0.read_digitals.png
EEIH HREES

BT | g =
o MR el O A
i (A D 0k G =

o) R |3l R B
AT | e £
o) MR | M3 R B
infy (A
o) R | 3l G B

BT | g =
o R Ml G A
infy (A GO 0 6 =

ol R EES R

AT | e £
o) MR | M3 R B
s (A C

_images/xxy.png
HEEEHE

o5

BR

Tumipbit

B

Tecpixel

B

FihA

EHR

bt

2

Tuiangyu

from microbit import *

while 3
display.scroll(' Xuxiangyu')

_images/invertx.png
Btk O30

REEE | ARER

_images/display.shows.png
BrEE | AEE O
R =

BrElE | AREE (N
R =
&

_images/LED8.png
Microbit

&R _ I
4 Hello, Vorld!
Feopixel rp—y !
Pins L
r -
Fire o =m
EHR, .
troe
[b 4
Fe
%
%8

from microbit import *

display.scroll('Hello, Worl

_static/minus.png

_static/up-pressed.png

_images/SY.png
TRuulPLBIf'

,A'E'X"X‘VAVA\
AWNNNWNNM

NM

1

«A'Ammrn“h-

OREF
TG

1Y k3

4/,\ <

OFF iz

_images/running_time.png

_images/display.scroll.gif
i A 2

a2

HEEEE

&5

BR

TumipBit

i

Tecpixel

sl

Fih

EHR

B

i

#HF

pe3

_images/compass.headings.png
ERiEsE 00 0 ERiEsE €0 @
Wi (EnEk | AEEE GRS

) R il) wEHERE €

#ir | ExEfH | ABER GRS

=) 1R e) EEHEAE EB €D

#ir | BxEfH | ABEE GRS

&) R Tt) it 68 €D

#ir | BxEfH ABEE GRS

_images/accelerometer.was_gesture.gif
i A 2

a2

HEEEE

TumipBit

i

Tecpixel

sl

Fih

EHR

B

i

#HF

pe3

_images/pin0.read_digital.png

_images/compass.heading.png

_images/LED7.png
from microbit import *

Microbit

&%
[lle, Lokl display.scroll('Hello, World!")

while 3
pass

Tecpixel while -

Pins

FihA 7
EHR
pi

2

_images/accelerometer.current_gesture.png

_images/PWM2.png
HEEEE

o5

BR

F#&python

#HETEYNM—

#FERT10027 , Jy
TERIFRATE

#EAHRIX, YRILED
NEEREAL

_images/compass.calibrate.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/TX1.png
turnipbit oE L ? <

SPythonfiaEiiEE WEE (EAE KBLE wm
from microbit import *

while True:
display.scroll('Hello, World!')
sleep(1900)

do [Scroll message

Sleep RO nilliseconds
-

_images/accelerometer.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/ADC.png
i SSCOM3.2 (FE&EANE(T T), ZMhttpy//wwwmeusl.com, Email: m... .| B [

2 .
z E
]
]
7
o
o 4
(R ~ mwt | fee0 | ARen | mes
snsfon | @ xmen| _mm | WWW.MCUSI.COM HR
= AT S ()]
e L ECHT %S £+ S5 25 A
g TR G haine e coomsesis A
[BT | ARMERE Tk cor/ors (REERREA]
& e~ Sim | | CREA oS, 1287) Pifuini0izirt
Nore

COM7ESTFF 115200bps [CTS=0 DSR=0 RL

_images/J3.jpg

_images/TBJJ1.png
i A 2

a2

HEEEE

Microbit

B

Tecpixel

Pins

FihA

EHR

bt

_images/JU.png
i SSCOM3.2 (feE=BANE(T T), EBhttpy//wwvemecu5l.com, Email: m

= =

i

=

Coos

-

o5

i

9

-

oo

-

0

i

9

A

Coos

-

o0 -

P |[FR R | B0 | FE0 [e

snsfon -] @ B0 | _®E | WWW.MCU51.COM §R
ATs AICHTRERTIE? SR ()
T iR ECDATHE-SHTH v 5 % 1R
TR B e 800058315 CRIERA)
EEFT | AT WiFi /Gor=/GPS [HISTRGIEA]

B | | (SRBFHBASSOONS, 1385 lrwinioizir!
R163653 |COM7EfIF 115200bps [CTS=0 DSR=0 RL

_images/music.play.png

_images/display.get_pixel.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/TBJJ6.png
turnipbit oE L ? <
WEE PRE ABLE #E "E

£ PythonZiAEHARE
from microbit import *

display.show()

F#hex F#&python

_images/JS3.png
turnipbit o L ?

SPythonfiaEiiEE WEE (EAE KBLE wm
from microbit import *

1Y

while False:
display.scroll('1')
display.scroll('0")
display.scroll('-")

do [Saroll message
Scroll nessage

Scroll message

F#hex F#&python Z

_images/compass.is_calibrated.gif
i A 2

a2

HEEEE

&5

BR

TumipBit

i

Tecpixel

sl

Fih

EHR

B

i

#HF

pe3

nav.xhtml

 Table of Contents

 		TurnipBit MicroPython文档资料

 		介绍

 		Hello, World!

 		Images

 		DIY Images

 		Animation

 		Buttons

 		Event Loops

 		Handling an Event

 		Input/Output

 		Ticklish Python

 		Bleeps and Bloops

 		Music

 		Wolfgang Amadeus Microbit

 		Sound Effects

 		Random

 		Random Numbers

 		Seeds of Chaos

 		Movement

 		Musical Mayhem

 		Gestures

 		Magic-8

 		Direction

 		Compass

 		Storage

 		Open Sesame

 		OS SOS

 		File Transfer

 		Mainly main.py

 		Speech

 		DALEK Poetry

 		Say Something

 		Poetry on Demand

 		Phonemes

 		Sing A Song of Micro:bit

 		Network

 		Connection

 		Signal

 		Protocol

 		Message

 		Application

 		The End Result

 		Radio

 		Layers upon Layers

 		Bytes

 		Addressing

 		Fireflies

 		Next Steps

 		Hello, World!

 		Images

 		DIY Images

 		Animation

 		Buttons

 		Event Loops

 		Handling an Event

 		Input/Output

 		Ticklish Python

 		Bleeps and Bloops

 		Music

 		Wolfgang Amadeus Microbit

 		Sound Effects

 		Random

 		Random Numbers

 		Seeds of Chaos

 		Movement

 		Musical Mayhem

 		Gestures

 		Magic-8

 		Direction

 		Compass

 		Storage

 		Open Sesame

 		OS SOS

 		File Transfer

 		Mainly main.py

 		Speech

 		DALEK Poetry

 		Say Something

 		Poetry on Demand

 		Phonemes

 		Sing A Song of Micro:bit

 		Network

 		Connection

 		Signal

 		Protocol

 		Message

 		Application

 		The End Result

 		Radio

 		Layers upon Layers

 		Bytes

 		Addressing

 		Fireflies

 		Next Steps

 		TurnipBit 实例教程

 		TurnipBit是什么

 		1.TurnipBit简介

 		2.TurnipBit板载器件简介

 		2.1主控芯片简介

 		2.3加速度传感器

 		2.4磁敏传感器

 		2.5板载LED灯阵

 		2.6板载耳机接口

 		3.TurnipBit接口详解

 		TurnipBit开发环境介绍

 		1.首界面介绍

 		2.在线编程界面介绍

 		3.图形编程界面使用方法

 		3.1图形编程界面功能区域讲解

 		3.2图形编程界面使用方法

 		TurnipBit的快速入门

 		一、TurnipBit与电脑连接

 		二、开始我们的第一个程序

 		TurnipBit向全世界说“hello world”

 		一、什么是TurnipBit开发板

 		二、利用TurnipBit向全世界说“hello world”

 		1、具体要求

 		2、所需器件

 		3、LED介绍

 		三、制作主要过程

 		1、制作流程

 		TurnipBit的耳机使用

 		1.什么是TurnipBit开发板

 		2.利用turnipbbit 的耳机听音乐

 		2.1具体要求

 		2.2所需器件

 		1、耳机介绍

 		3.制作主要过程

 		3.1制作流程

 		TurnipBit的LED操作

 		1.什么是TurnipBit开发板

 		2.利用TurnipBit开发板完成流水显示图形

 		2.1具体要求

 		2.2所需器件

 		1、LED介绍

 		2、流水灯简介

 		3.制作主要过程

 		3.1制作流程

 		3.3具体代码

 		TurnipBit开发板按键控制显示图形

 		一、什么是TurnipBit开发板

 		二、利用TurnipBit开发板完成按键控制显示图形

 		1、具体要求

 		2、所需器件

 		3、按键介绍

 		三、制作主要过程

 		1、制作流程

 		TurnipBit的加速度传感器使用

 		1.什么是TurnipBit开发板

 		2.利用TurnipBit开发板完成倾斜状态LED显示

 		2.1具体要求

 		2.2所需器件

 		1、LED介绍

 		2、加速度传感器简介

 		三、制作主要过程

 		1、制作流程

 		TurnipBit的蓝牙使用

 		1.什么是TurnipBit开发板

 		2.详细讲解TurnipBit的蓝牙使用

 		2.1具体要求

 		2.2所需器件

 		1、蓝牙介绍

 		3.TurnipBit利用蓝牙连接手机详细教程

 		TurnipBit开发板串口接收和打印

 		一、什么是TurnipBit开发板

 		2、所需器件

 		三、制作主要过程

 		1、制作流程

 		2、具体代码

 		TurnipBit的ADC使用

 		一、什么是TurnipBit开发板

 		二、利用TurnipBit开发板完成串口输出ADC的值

 		1、具体要求

 		2、所需器件

 		3、串口介绍

 		4、ADC介绍

 		三、制作主要过程

 		1、制作流程

 		TurnipBit完成呼吸灯

 		一、什么是TurnipBit开发板

 		二、利用TurnipBit完成呼吸灯阵的制作

 		1、具体要求

 		2、所需器件

 		3、PWM介绍

 		三、制作主要过程

 		1、制作流程

 		TurnipBit开发板加速度串口打印

 		一、什么是TurnipBit开发板

 		二、利用TurnipBit开发板完成加速度值的获取与打印

 		1、具体要求

 		2、所需器件

 		3、串口介绍

 		4、加速度传感器介绍

 		三、制作主要过程

 		1、制作流程

 		TurnipBit开发板按键控制显示图形

 		一、什么是TurnipBit开发板

 		二、利用TurnipBit开发板完成按键控制显示图形

 		1、具体要求

 		2、所需器件

 		3、串口介绍

 		三、制作主要过程

 		2、具体代码

 		TurnipBit开发板板载流水灯

 		一、什么是TurnipBit开发板

 		二、利用TurnipBit开发板完成板载流水灯

 		1、具体要求

 		2、所需器件

 		3、LED介绍

 		4、流水灯简介

 		三、制作主要过程

 		1、制作流程

 		2、具体代码：

 		TurnipBit开发板串口打印磁敏值

 		一、什么是TurnipBit开发板

 		二、利用TurnipBit开发板完成串口打印磁敏传感器的值

 		1、具体要求

 		2、所需器件

 		3、磁敏传感器介绍

 		4、串口介绍

 		三、制作主要过程

 		1、制作流程

 		2、具体代码：

 		TurnipBit开发板串口输出ADC值

 		一、什么是TurnipBit开发板

 		二、利用TurnipBit开发板完成串口输出ADC的值

 		1、具体要求

 		2、所需器件

 		3、串口介绍

 		4、ADC介绍

 		三、制作主要过程

 		1、制作流程

 		2、具体代码：

 		TurnipBit开发板加速度传感器判断开发板倾斜状态

 		一、什么是TurnipBit开发板

 		二、利用TurnipBit开发板完成加速度传感器判断开发板的倾斜状态

 		1、具体要求

 		2、所需器件

 		3、加速度传感器介绍

 		三、制作主要过程

 		1、制作流程

 		2、具体代码：

 		滚动消息

 		滚动的名牌

 		小试牛刀

 		TurnipBit 拼插控件教程

 		显示块

 		获取指定LED亮度

 		设置指定LED亮度

 		滚动消息

 		显示图像

 		显示图像（带参数）

 		打开屏幕

 		关闭屏幕

 		显示是否打开

 		清除显示内容

 		按键块

 		按键A被按下

 		按键A曾经按下

 		按键A按下的次数

 		图形块

 		内置图像

 		复制图像

 		反显图像

 		创建图像

 		TurnipBit块

 		错误状态码

 		复位TurnipBit

 		延时

 		运行时间

 		温度

 		加速度传感器块

 		获取当前加速度值

 		获取当前动作

 		获取历史动作

 		获取当前动作

 		获取已完成动作

 		磁敏传感器块

 		校正指南针

 		指南针磁场强度

 		指南针的方向

 		指南针是否已校正

 		音乐块

 		内置音乐

 		播放音调

 		播放音符列表

 		恢复音乐设置

 		停止音乐播放

 		设置节拍

 		获取当前节拍

 		micro:bit Micropython API

 		The microbit module

 		Buttons

 		The LED display

 		Pins

 		Images

 		The accelerometer

 		The compass

 		I2C bus

 		UART

 		Microbit Module

 		Functions

 		Attributes

 		Buttons

 		Input/Output Pins

 		Classes

 		Image

 		Modules

 		Display

 		UART

 		SPI

 		I²C

 		Accelerometer

 		Compass

 		Accelerometer

 		Functions

 		Examples

 		Bluetooth

 		Buttons

 		Attributes

 		Classes

 		Example

 		Compass

 		Functions

 		Example

 		Display

 		Functions

 		Example

 		Local Persistent File System

 		I²C

 		Functions

 		Connecting

 		Image

 		Classes

 		Attributes

 		Operations

 		Music

 		Musical Notation

 		Functions

 		Built in Melodies

 		Example

 		NeoPixel

 		Classes

 		Operations

 		Using Neopixels

 		Example

 		The os Module

 		Functions

 		Input/Output Pins

 		Pin Functions

 		Pulse-Width Modulation

 		Classes

 		Radio

 		Constants

 		Functions

 		Examples

 		Random Number Generation

 		Functions

 		Speech

 		Functions

 		Punctuation

 		Timbre

 		Phonemes

 		Singing

 		How Does it Work?

 		Example

 		SPI

 		Functions

 		UART

 		Functions

 		Installation

 		Dependencies

 		Development Environment

 		Installation Scenarios

 		Windows

 		OS X

 		Linux

 		Next steps

 		Flashing Firmware

 		Building firmware

 		Preparing firmware and a Python program

 		Flashing to the micro:bit

 		Accessing the REPL

 		Serial communication

 		Determining port

 		Establishing communication with the micro:bit

 		Developer FAQ

 		Contributing

 		Checklist

_images/button_a.is_pressed.gif
i A 2

a2

HEEEE

&5

BR

TumipBit

i

Tecpixel

sl

Fih

EHR

B

i

#HF

pe3

_images/piezo_buzzer.jpg

_images/mb-firefly.gif

_images/ADC5.png
tumlpblt

HZBTRIER
o) ssmptsTEnaDChE

_images/RM.png
TURNIPBIT (L)

B BHASR B ESN

[pETALLS 2016/3/22 1630 XA k8
) TeBIT 2016/3/22 16:30 HTML 3k 1KB

_images/LE4.png
i A 2
a2
HEEEE
o5
BR
Microbit
B
Tecpixel
Pins
FihA

EHR

bt

from microbit import *

display.scroll('*')
display.scroll('+")
display.scroll('Y')

_images/music.get_tempo.png

_images/music.reset.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/Image.HEART.png

_images/DUNDONNG.gif
B ?Tumip Bt < + © — 8 x

tpyboard.com

i A 2

a2
HEEEE

&5

BR

TumipBit
i
Tecpixel
sl
Fih

EHR

B
I i

#HF

pe3

N
20177715 |

_images/pwm.png

_images/LED18.png
1812l

_images/JS6.png
turnipbit o L ?

SPythonfiaEiiEE WEE (EAE KBLE wm
from microbit import *

1Y

while True:
display.scroll('1')
display.scroll('0")
display.scroll('-")

do [Saroll message
Scroll nessage

Scroll message

F#hex F#&python Z

_images/music.pitch1.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/temperature.gif
HEEEE
&5

BR
TumipBit
i
Tecpixel
sl
Fih
EHR
B

i

_images/pin0.write_analog.png
3518

_images/LE3.png
turnipbit " L 2?2 <
ks

£ PythonBiRE MRS WEE EHE KBEf e

Microbit

F#hex F#&python

_images/accelerometer.is_gesture.gif
MBS
i
RS
"R

7
TumipBit
&
Heapizel
3l
Fig
EHR
=8
[
Fes

pe3

_images/LED2.png
turnipbit

£ PythonBiAHHTRE

oot brignmess ot 1 O] ¥ o]
T

Clear display

Aninate inages

Set p:

with a frane delay of @8 ns.
Yait @@
Locp @
Clear @

Scroll nessage

Tum on display

L]

RS

L

HBHE

1

-—
B EE

e

_images/pin0.write_digital.gif
i A 2

i
RS
"R
7
TumipBit
&
Heapizel
3l
Fig
EHR
=8

[

Fes

pe3

. Tumip Bit

tpyboard.com

x

15 [

2017/7/24

_images/JS5.png
turnipbit o L ?

SPythonfiaEiiEE WEE (EAE KBLE wm
from microbit import *

1Y

while True:
display.scroll('1')
display.scroll('0")
display.scroll('-")

do [Seroll